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1. ELEMENTARY 

PROPERTIES 
 

§1.1. Definitions 
Ring Theory is a 

part of abstract 

algebra. The other 

main part of abstract 

algebra is Group 

Theory, and it is 

assumed that you are 

already familiar with 

Group Theory. (See my notes on Group Theory.) 

The abstract approach is one that considers many 

algebraic systems at the one time. At school you learnt 

about the systems of integers, real numbers and 

polynomials. At university you learnt about n  n 

matrices. These are all examples of rings. 

In ring theory we study not just a few individual 

systems, but the whole world of this type of system. Some 

of the examples will be very useful – others will just be 

curiosities. You have heard of rings that give the wearer 

great powers. Abstraction gives a mathematician great 

power, in being able to prove theorems for a whole bunch 

of mathematical systems at once. So a ring will be defined 

as a mathematical system that satisfies certain properties, 

called the ring axioms. These form the basis of the theory. 

We don’t ask what the objects that make up a ring. They 
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could be numbers, or polynomials, or matrices, or other 

mathematical entities that we’ve never even heard of. 

As we develop ring theory we add additional 

properties, so that we study certain classes of rings. One 

of the goals of Ring Theory (as in Group Theory) is to 

classify all rings. This means finding concrete examples 

that are models for all abstract rings. 

Of course this is a hopelessly impossible task. But 

what we can hope for is to classify certain classes of rings. 

In group theory we have a classification of all finite 

abelian groups, and all finite simple groups. (The former 

is fairly easy – the latter was an enormous project that was 

finally accomplished many years ago by an army of group 

theorists who wrote thousands of papers that complete 

this classification.) 

In these notes we’ll achieve the classification of 

finite fields of prime order (easy) and the nil-semisimple 

rings with descending chain condition on right ideals 

(hard). You probably don’t know what ‘nil-semisimple’ 

or ‘descending chain condition’ mean. Don’t worry – you 

will. 

What distinguishes Ring Theory from Group 

Theory is that groups only have one binary operation 

which we call addition or multiplication. Rings have two 

operations which we call addition and multiplication. We 

could study them by focussing on just one operation at a 

time, but the Distributive Law, [a(b + c) = ab + ac] is a 

ring axiom that binds these two operations together. So, 

let’s begin. What, exactly, is a ring? 
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A ring R is a set on which binary operations of + 

and  are defined such that: 

• (R, +) is an abelian group, 

• (R, ) is a semigroup, that is, it is closed and 

associative, 

•  is distributive over +.  

 

I will write a  b as ab and powers as an in the usual 

way. Some books also insist that a ring has a 

multiplicative identity, but I don’t. This means that ideals 

of rings, which we’ll define shortly, can be considered as 

subrings. 

As I said you’ve lived with particular rings for 

many years. You began your mathematical journey in 

kindergarten, or before, when you learnt to count. Then 

you learnt your addition and multiplication tables in 

primary school. But it wasn’t until you learnt about 

negative numbers that you mastered your first ring, the 

ring of integers, which we denote by ℤ. 

By then you knew about fractions and so you had a 

knowledge of a second ring, the ring, ℚ, the ring of 

rational numbers. You then learnt about decimals and 

hence you met a third ring of real numbers, ℝ, and then 

finally, the ring of complex numbers, ℂ. 

But really, this was just one ring, with several 

important subrings. You learnt a fair amount of algebra, 

and you naively thought that the Laws of Algebra were 

always true. 
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When you met your next ring, the ring of 

polynomials, you just assumed that the algebra you first 

learnt would continue to apply. And by and large you 

were correct. 

The two important Rules of Algebra that you 

learnt: the fact that you can multiply things in either order 

and get the same answer, and that if a product is zero then 

one of the factors must be zero. These continue to work 

for the ring of polynomials. Of course polynomials 

usually don’t have inverses under multiplication, but you 

were fine with that. It didn’t make a huge difference. You 

learnt things like the fact that quadratic equations have at 

most two solutions. 

 

 When you met matrices you met a ring where you 

had to learn the rules of algebra all over again. Both the 

Commutative Law for Multiplication and the 

Cancellation Law break down. So, too, do many of the 

‘facts’ you had learnt about algebra that are built on these 

assumptions. For example, quadratic equations involving 

matrices can have infinitely many solutions. When you 

met the concept of similar matrices you wondered why, 

with an expression such as S−1DS, you can’t just cancel 

the S’s. It then dawned on you that what you learnt at 

school only applied to numbers, real or complex. In effect, 

most of that algebra is just the algebra of fields, which are 

rather special types of ring. 
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 Now, I said that a ring is an abelian group under 

addition and a semigroup under multiplication, with the 

distributive laws binding the additive and multiplicative 

structures together. But this is a very compact description. 

Let’s flesh it out by listing all the ring axioms. 

 

RING AXIOMS 

(1) Closure Law for Addition: 

a + b  R for all a, b  R. 

(2) Associative Law for Addition: 

(a + b) + c = a + (b + c) for all a, b, c  R. 

(3) Identity under Addition: 

There exists 0  R such that a + 0 = a = 0 + a for all 

a  R. 

(4) Inverses under Addition: 

For all a  R there exists −a  R such that: 

a + (−a) = (−a) + a for all a  R. 

(5) Commutative Law under Addition: 

a + b = b + a for all a, b  R. 

(6) Closure Law under Multiplication: 

ab  R for all a, b  R. 

(7) Associative Law under Multiplication: 

(ab)c = a(bc) for all a, b  R. 

(8) Distributive Laws: 

a(b + c) = ab + ac and 

(b + c)a = ba + ca for all a, b, c  R. 
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Axioms (1) – (4) are the axioms for a group, though we 

usually use multiplicative notation. 

Axioms (1) – (5) are the axioms for an abelian group. 

Axioms (6), (7) are the axioms for a monoid. 

Axioms (1) – (8) are the axioms for a ring. 

 

 A field is a commutative ring in which there is an 

identity, 1, under multiplication, where 1  0 and where 

every non-zero element has a multiplicative inverse. 

These extra axioms are as follows. 

  

FIELD AXIOMS are the ring axioms plus 

(9) Identity under Multiplication: 

There exists 1  R, with 1  0, such that a1 = a = 1a for 

all a  R. 

(10) Inverses under Multiplication: 

For all a  R with a  0, there exists a−1  R such that: 

aa−1 = 1 = a−1a for all a  R. 

(11) Commutative Law under Multiplication: 

ab = ba for all a, b  R. 

 

Axioms (1) – (10) are the axioms for a division ring. 

 

 You have met many examples of field, but you 

have probably never seen a division ring that isn’t a field, 

That is because there are no finite examples of such non-

commutative fields and it’s not easy to provide a simple 

example of an infinite one. We may get to see one later. 
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§1.2. Elementary Properties 
 You’ll notice that there are some Rules of Algebra 

that are missing. Some aren’t there because they’re not 

always true for rings in general, such as the commutative 

law for multiplication. Others are missing, even though 

they’re true for all rings, because they can be deduced 

from the other axioms. 

 For example you’ll be familiar with the fact that if 

you multiply by zero you get zero. This is, in fact, true for 

all rings but, because we can prove it from the other 

axioms, we omit it from the list of axioms. 

 

Theorem 1: Let R be a ring. Then for all a, b  R: 

(A) If a + b = a + c then b = c; 

(B) a0 = 0 = 0a; 

(C) (−a)b = −ab = a(−b); 

(D)(−a)(−b) = ab. 

Proof: 

(A) (−a) + [a + b] = (−a) + [a + c] 

 [(−a) + a] + b = [(−a) + a] + c by Axiom 2 

 0 + b = 0 + c by Axiom 4 

 b = c by Axiom 3. 
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(B) 0 + a0 = a0 = a(0 + 0) by Axiom 3 twice 

                 = a0 + a0 by Axiom 8 

Hence 0 = a0 by Theorem 1A. 

 

(C) ab + (−ab) = 0 by Axiom 4 

                       = 0b by Theorem 1 (2) 

                       = [a + (−a)]b by Axiom 4 

                       = ab + (−a)b by Axiom 8 

             −ab = (−a)b by Theorem 1A. 

a(−b) = −ab is proved similarly. 

 

(D) (−a)(−b) + (−ab) = (−a)(−b) + (−a)b  by Theorem 1C 

                                 = (−a)(−b + b) by Axiom 8 

                                 = (−a)0 by Axiom 4 

                                 = 0 by Theorem 1B 

                                 = ab + (−ab) by Axiom 4 

 (−a)(−b) = ab by Theorem 1 (1) and Axiom 5 ☺ 

 

Theorem 2 (Cancellation Law for Fields): 

Suppose a, b, c are elements of the field F. 

If a  0 then ab = ac implies that b = c. 

Proof: Suppose a  0. Then a−1 exists by Axiom 10. 

Suppose that ab = ac. 

 a−1(ab) = a−1(ac). 

 (a−1a)b = (a−1a)c by Axiom 6. 

 1b = 1c by Axiom 10. 

 b = c by Axiom 9. 
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 There is a class of rings that lies between the 

commutative rings and field. An integral domain is a 

commutative ring with a multiplicative identity that 

satisfies the following axiom. 

 

INTEGRAL DOMAIN AXIOMS are the ring 

axioms plus 

(9) Identity under Multiplication: 

There exists 1  R, with 1  0, such that a1 = a = 1a for 

all a  R. 

(11) Commutative Law under Multiplication: 

ab = ba for all a, b  R. 

(13) If ab = 0 then a = 0 or b = 0. 

 

Theorem 3 (Cancellation Law for Integral Domains): 

Suppose a, b, c are elements of the integral domain R. 

If a  0 then ab = ac implies that b = c. 

Proof: Suppose that ab = ac. 

 ab + (−ac) = 0 by Axiom 4 

ab + a(−c) = 0 by Theorem 1C 

 a[b + (−c)] = 0 by Axiom 8 

b + (−c) = 0 by Axiom 13 

[b + (−c)] + c = 0 + c 

 b + [(−c) + c] = c by Axioms 2 and 3 

b + 0 = c by Axiom 4 

 b = c by Axiom 3. 
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 We define subtraction by a − b = a + (−b) and we 

could provide a shorter proof of the above theorem by 

noting that ab = ac implies that a(b − c) = 0 which, because 

a  0, implies that b = c. However it is only an illusion 

that this proof is simpler because we are so used to basic 

algebra. To do things ‘properly’ we would need to prove 

a few properties of subtraction first. 

 Of course, from now on we won’t be doing things 

‘properly’ that is by highlighting every axiom as we 

proceed. That would be too tedious. When doing integral 

domain a you can more or less proceed using what you’ve 

learnt about the algebra of fields (the algebra you learnt at 

school) provided you don’t use multiplicative inverse. 

When working with rings in general you must also avoid 

rearranging factors and cancelling. 

 In a general ring with multiplicative identity some 

elements may have multiplicative inverses. However you 

must not cancel the x’s in an expression such as x−1yx. 

The x and its inverse must be adjacent before you can 

cancel. 

 Consider the following ‘proof’ that an element of a 

ring has at most two square roots. 

 

‘Theorem’: Suppose that a2 = b2 = c in a ring. 

‘Proof’: Suppose that a2 = b2 

 a2 − b2 = 0 

 (a − b)(a + b) = 0 

 a − b = 0 or a + b = 0. 

  a = b or a = −b. 



 19 

This is a valid proof for a field, and even for an integral 

domain. But we have unconsciously used two things that 

are not always true in a ring. 

 For a start (a − b)(a + b) = a2 + ab − ba − b2. This 

can only be simplified if ab = ba. 

 Secondly the cancellation law doesn’t hold in a 

general ring. 

 

 Some of the ring axioms appear to contain 

redundant information. For example in Axiom 3 we say 

that x + 0 = 0 = 0 + x. This is so that the axioms can be 

independent of one another. But in the light of the 

commutative law of addition, which holds for all rings, 

this extra information is indeed redundant. But when we 

come to multiplication, which may be non-commutative, 

both parts of the axiom are required. 

 

 We say that e is a left identity for a ring R if ex = 

x for all x  R and a right identity if xe = x for all x  R. 

It is only an identity, satisfying Axiom 9, if it is both a left 

identity and a right identity. There are rings that have a 

left identity and no right identity, and vice versa. 

 

Example 1: Let R be the set of a 2  2 real matrices of 

the form 






a b

0 0
 . Then 







1 0

0 0
 






a b

0 0
  = 







a b

0 0
  for all a, b and 
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so 






1 0

0 0
  is a left identity for R. But 







a b

0 0
 






1 0

0 0
  = 







a 0

0 0
 and 

so 






1 0

0 0
  is not a right identity. 

 

 Similar remarks can be made about multiplicative 

inverses. Suppose R has a 2-sided identity, 1. We say that 

y is a left inverse for x if yx = 1 and we say that z is a 

right inverse for x if xz = 1. 

There are rings with a 2-sided multiplicative 

identity,1, that have elements with a left identity and no 

right identity, and vice versa. 

ℕ ℤ ℚ ℝ ℂ 
 

Example 2: Let R = {f: ℝ → ℝ} with: 

(f + g)(x) = f(x) + g(x) and 

(fg)(x) = g(f(x)). 

Clearly R has a 2-sided identity, namely the identity 

function 1(x) = x. 

Let e(x) = ex and let g(x) = 


log x if x > 0

1 if x  0
   

Then (eg)(x) = g(e(x)) = g(ex) = log(ex) = x. 

But if (ge)(x) = e(g(x)) = x then eg(x) = x, which is not 

possible if x  0. 

 So e(x) has a left inverse, but no right inverse. In 

fact it has infinitely many left inverse since we could 

define g(x) any way we liked for x  0 and it would still 

be a left inverse. A similar example can be constructed for 

right inverses. 
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 However if an element of a ring has a left inverse 

and a right inverse, they must be equal and so there can 

only be one of each. 

 

Theorem 4: Suppose R is a ring with a 1. 

If x  R has a left inverse, a, and a right inverse, b, then 

a = b. This will be the only left inverse and the only right 

inverse. 

Proof: a = a1 = a(xb) = (ax)b = 1b = b. 

 

 The concepts of left and right inverse are connected 

with the properties of functions being 1-1 and/or onto. A 

function f:S →S has a left inverse if and only if it is 1-1 

and a right inverse if and only if it is onto. 

 

An element of a ring is called a unit if it has a 

multiplicative inverse. In a field every non-zero element 

is a unit, while in ℤ there are just two units, 1 and −1. The 

units of Mn(F) are the non-singular, or invertable 

matrices. The set of units of R is denoted by R#. 

 

Theorem 5: If R is a ring with a 1, (R#, ) is a group. 

Proof: Suppose that u, v  R#. 

Then u−1 and v−1 exist, and are in R. 

Now (uv)(v−1u−1) = u(vv−1)u−1 = 1. 

Moreover (v−1u−1)(uv) = 1. 

Hence (uv)−1 exists and is equal to v−1u−1, so uv  R#. 

Also u−1  R# since (u−1)−1 and 1  R#. 
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§1.3. Rings of Small Order 
 A zero ring is one where every product is 0. 

Essentially the structure is just that of the additive group. 

Given any abelian group G, we define Zero(G) to 

be the zero ring on G, that is where we define xy = 0 for 

all x, y  G. Clearly this multiplication is associative! 

 

 We’ll now embark on a quest to classify all finite 

rings. However, we won’t get very far because the 

number of possibilities will soon get out of hand. 

We begin with the smallest ring, which is {0}. With 

2 elements, they’ll be 0 and x, with x2 = 0 or x. Clearly in 

the first case we get Zero(ℤ2) and in the second case we 

get the ring ℤ2. These ℤ2’s look the same but in the first 

case it’s the abelian group and in the second case it’s the 

ring. 

 

Theorem 6: If R is a ring of prime order p then 

R  Zero(ℤp) or the ring ℤp. 

Proof: The additive group is a group of order p which, 

from our knowledge of group theory, means that it has to 

be the cyclic group ℤp. 

 So R = {0, x, 2x, …, (p−1)x}. The multiplication is 

completely determined by knowing x2. Clearly x2 = kx for 

some k with 0  k < p. 

Case 1: k = 0: Then R  Zero(ℤp). 

Case 2: k > 0: 

Then k−1 exists as an element of the field ℤp. 

Define :R → ℤp by r = k−1r. 
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Then (ax + bx) = k−1(ax + bx) 

                            = k−1(ax) + k−1(bx) 

                            = (ax) + (bx). 

Also [(ax)(bx)] = [abx2] = [(ab)kx] = k−1(ab)x and 

(ax)(bx) = (k−1ax)(k−1bx) 

                     = k−2abx2 = k−2abkx = k−1(ab)x. 

Then  is clearly a ring isomorphism, and so R is 

isomorphic to the field ℤp. ☺ 

 

Theorem 7: There are 11 rings of order 4. 

Three of them have additive group ℤ4 and the elements 

will have the form 0, x, 2x, 3x. 

Eight of them have additive group ℤ2  ℤ2 and the 

elements will have the form 0, a, b, a + b. 

The multiplication tables are as follows. (Multiplication 

by 0 is omitted to save space.) 

 

R1 x 2x 3x  R2 x 2x 3x 

x 0 0 0  x x 2x 3x 

2x 0 0 0  2x 2x 0 2x 

3x 0 0 0  3x 3x 2x x 

        Zero(ℤ4)                    ℤ4 

 

R3 x 2x 3x  R4 a b a+b 

x 2x 0 2x  a 0 0 0 

2x 0 0 0  b 0 0 0 

3x 2x 0 2x  a+b 0 0 0 

        Zero(ℤ2  ℤ2) 
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R5 a b a+b  R6 a b a+b 

a 0 0 0  a a 0 a 

b 0 b b  b 0 b b 

a+b 0 b b  a+b a b a+b 

         ℤ2  ℤ2       ℤ2 Zero(ℤ2) 

 

 
 

 

 

 

 

 

 

 

 

Proof: omitted. 

 

There are 11 rings of order p2 for all primes p and they 

correspond to the above. See Benjamin Fine: 

Classification of Finite Rings of Order p2 Mathematics 

Magazine Vol 66 No 4, Oct 1993 p248.  
 

Here are the numbers of rings of order up to 16: 

R7 a b a+b  R8 a b a+b 

a a b a+b  a a b a+b 

b b a+b a  b a b a+b 

a+b a+b a b  a+b 0 0 0 

         GF(4)   

R9 a b a+b  R10 a b a+b 

a 0 a a  a b 0 b 

b a b a+b  b 0 0 0 

a+b a a+b b  a+b b 0 b 

R11 a b a+b 

a a a 0 

b b b 0 

a+b a+b a+b 0 
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order 1 2 3 4 5 6 7 8 9 

# rings 1 2 2 11 2 4 2 52 11 

 

order 10 11 12 13 14 15 16 

# rings 4 2 22 2 4 4 390 

 

§1.4. Examples of Rings 

 

 

 
 

          COM    IDs    FIELDS   DIV      RINGS 
            RINGS                             RINGS 

 

 

 
 

 Perhaps the only field that you know is the field of 

complex numbers, and its many subfields. Less familiar 

examples are some of the finite fields, integers modulo a 

prime. There are other finite fields. These are discussed in 

my notes on Galois Theory. A really big field is the field 

of all rational functions. These have the form 
a(x)

b(x)
 where 

b(x)  0. They add and multiply in the usual way. 
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 When it comes to integral domains we’ll need to 

look to infinite examples, because finite integral domains 

are, in fact, fields. 

 

Theorem 8: Every finite integral domain is a field. 

Proof: Let R be an integral domain of finite order n. 

Let R and let x be a non-zero element of R. 

By the Cancellation Law, multiplication by x is 1-1. 

Since R is finite this function is onto. 

So, xy = 1 for some y  R, and so x has a multiplicative 

inverse. ☺ 

 

 So if all finite integral domains are fields, the 

interesting ones will be infinite. Many of these are 

subrings of the field of complex numbers, such as the ring 

of Gaussian Integers, complex numbers of the form a + bi 

where a, b are integers. But another familiar example of 

an integral domain is the ring of real polynomials F[x]. 

 

 As I said we will have to wait for an example of a 

division ring that’s not a field. 

 

 When it comes to non-commutative rings, the 

obvious place to look is the ring of n  n matrices, and its 

many subrings. 
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§1.5. The Isomorphism Theorems 
A non-empty subset S of a ring is a subring if it is 

closed under +, − and . We use the same notation as for 

groups: S  R. 

 

Examples 3: 

ℤ  ℚ. The set of matrices with determinant 1 is a subring 

of Mn(F), the ring of n  n matrices over the field F. 

 

A left ideal I, of R, is a subring where rx  I for all 

r  R and x  I. That is you can multiply any element of 

I on the left by any element of R and it remains in I. 

 

A right ideal I, of R,is a subring where xr  I for 

all r  R and x  I. 

 

An ideal (sometime we’ll say ‘2-sided ideal’ is one 

that is both left and right. 

 

A useful piece of notation is the product ST of two 

subrings of R. ST is the set of all sums and differences of 

products st, where s  S and t  T. So ST is the set of all 

elements of the form  s1t1  s2t2  …  sntn for some n 

and some si  S and ti  T. In general ST is not a subring, 

because s1t1s2t2 may not be able to be written as an 

element of S times an element of T. However if either S 

or T is at least a one-sided ideal ST may be, not only a 

subring, but also at least a one-sided ideal. 
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Theorem 9: 

(1) Suppose S is a left ideal of R and T is a subring. 

Then ST is a left ideal of R. 

(2) Suppose T is a right ideal of R and S is a subring. 

Then ST is a left ideal of R. 

Proof: To show that ST is a subring it is sufficient to 

prove that products of the form s1t1s2t2 are in ST whenever 

s1, s2  S and t1, t2  T since the product of elements of 

ST will be a sum of elements of this form. 

Suppose s1, s2  S and t1, t2  T. 

(1) Suppose that S is a left ideal. Then t1s2 = s3 for some 

s3  S and so s1t1s2t2 = s1s3t2 which is contained in ST. 

Clearly ST is a left ideal, since S is. 

(2) Suppose that T is a right ideal. Then t1s2 = t3 for some 

t3  T and so s1t1s2t2 = s1t3t2 which is contained in ST. 

Clearly ST is a right ideal, since T is. 

 

In particular, R2 = RR is a 2-sided ideal of R. Just 

remember that R2 contains more than just the squares of 

the elements of R. It consists of all sums of products of 

elements of R. 

 

 We can extend this multiplication of ideals to many 

factors. In particular, for any n  1, Rn is the 2-sided ideal 

generated by all products with n factors. 

 A ring R is nilpotent if Rn = 0 for some n. This 

means that every product with sufficiently many factors 

is 0. Clearly a nilpotent ring cannot contain a 

multiplicative identity. 
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A related concept is that of a nilpotent element. 

The element x is nilpotent if xn = 0 for some n. 

 

We use the same notation for 2-sided ideals as for normal 

subgroups: I  R. 

 

The trivial ideal is {0}, which we denote by the same 

symbol, 0. 

 

A proper ideal is one that is not the ring itself. We will 

often talk about a proper non-trivial ideal, meaning one 

that lies between the two extremes. 

 

A maximal ideal of a ring R, is a proper ideal, M, where 

there’s no ideal, I, with M < I < R. A minimal ideal of a 

ring R, is a non-trivial ideal, M, where there’s no ideal, I, 

with 0 < I < M. 

 

We extend the adjectives to left ideals, right ideals and 

subrings. 

 

Examples 4: 

(1) 2ℤ  ℤ. In fact it is a maximal ideal. ℤ has no minimal 

ideals. 

(2) The set of matrices of the form 






a 0

b 0
 is a left ideal of 

the ring of matrices over a field but it’s not a right ideal. 

It is, in fact a minimal left ideal. This is left as an exercise. 
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The sum of two subrings S and T of a ring R is: 

S + T = {s + t | s  S, t  T}. 

 

The intersection of two subrings S and T of a ring R is 

S  T, as usual. 

 

If S, T are 2-sided ideals of R and S  T = 0 we say that 

the sum is a direct sum and write it as S  T. 

 

If S, T are any two rings, their (external) direct sum is 

S  T = {(s, t) | s  S, t  T}. 

 

Example 5: 

15ℤ + 27ℤ = 3ℤ. This is because GCD(15, 27) = 3 and so 

3 can be written in the form 15h + 27k. with h, k  ℤ. 

 

15ℤ  27ℤ = 135ℤ  since LCM(15, 27) = 135. 

 

(15ℤ) (27ℤ) = 405 ℤ) since 15  27 = 405. 

 

135ℤ = 27ℤ  5ℤ but we can’t write it as 15ℤ  27ℤ 

because their intersection is not zero. 

 

If I is a 2-sided ideal of the ring R then the quotient ring 

R/I is defined to be {a + I | a  R}, made into a ring under 

the operations: 

(a + I) + (b + I) = (a + b) + I; 

(a + I)(b + I) = ab + I 
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It’s easy to check that these are well-defined operations, 

that is, they are independent of the representatives. 

Remember that a + I = b + I if and only if b − a  I. 

 

Example 6: If m is an integer the set of all multiples is a 

2-sided ideal. That is, mℤ   ℤ. 

The coset 5 + 7ℤ = {…, −9, −2, 5, 12, 17, …}. 

Note that this is also 17 + 7ℤ. 

In ℤ / 7ℤ we have (5 + 7ℤ) + (4 + 7ℤ) = 9 + 7ℤ = 2 + 7ℤ. 

And (5 + 7ℤ) (4 + 7ℤ) = 20 + 7ℤ = 6 + 7ℤ. 

Apart from the notation, this is what we think of when we 

talk about the integers modulo 7. In fact we define the ring 

of integers mod 7 by ℤ7 = ℤ/7ℤ. 

 

Ring homomorphisms are functions, or maps that 

take sums to sums and products to products. But, before 

we express this in symbols, let me explain the notation 

that we’ll be using for functions. Instead of the usual (x) 

we’ll write the image of x under  as x. This may look a 

bit strange, but when it comes to composition of functions 

it will seem more natural. 

The product of two functions :S→T and :T→U 

is :S→U where x() = (x). This looks like an 

associative law, though x,  and  come from different 

sets. This is like the composition of functions, only 

backwards. You may remember that    was defined by 

(  )(x) = ((x)). So with    you have to remember 

that  is applied first. With our new notation the functions 
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are employed in the order in which they’re written – from 

left to right. 

 

If R, S are rings a map :R→S is a 

homomorphism if, for all a, b  R: 

      (1) (a + b) = a + b; 

      (2) (ab) = (a)(b). 

A homomorphism  is an isomorphism if it is 1-1 and 

onto. 

 

If there exists an isomorphism :R→S we say that R is 

isomorphic to S, and we write R  S. 

 

An automorphism of R is an isomorphism from R to R. 

 

The kernel of a homomorphism :R→S is 

ker  = {r  R | r = 0}. 

 

The image of  is im  = {r | r  R}, as usual. 

 

Example 7: If f(x) is a polynomial in x, with integer 

coefficients, we can define : ℤ[x] → ℤ by: 

f(x)  = the square of the sum of the coefficients of f(x), 

which is f(1)2. It’s obvious that f is a homomorphism. 

ker  = {f(x)  ℤ[x] | f(1) = 0.} = (x − 1) ℤ[x] and 

im  = {0, 1, 4, 9, 16, …} the set of perfect squares. 

 

In the same way as in group theory we have the three 

isomorphism theorems. 
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Theorem 10 (FIRST ISOMORPHISM THEOREM): 

If :R→S is a homomorphism and 

K = ker  then K  R and R/K  im . 

Proof: Define :R/ker  → im  by (r + K) = r. ☺ 

 

Theorem 11 (SECOND ISOMORPHISM 

THEOREM): 

If S  R and T  R then S  T  S and 

(S + T)/T  S/(S  T). 

Proof: Define the homomorphism :S→ST/T by 

s = s + T and use the First Isomorphism Theorem. ☺ 

 

Theorem 12 (THIRD ISOMORPHISM THEOREM): 

If I, J  R then J/I    R/I and R/J  (R/I)/(J/I). 

Proof: Define :R/I → R/J by (r + I) = r + J. We can 

show that this is well-defined. Now use the First 

Isomorphism Theorem. ☺ 

A ring R is simple if R is not a zero ring and 0 and 

R are the only 2-sided ideals of R. A commutative ring 

with 1 is simple if and only if it is a field. 

 

Theorem 13: Mn(F) is simple. 

Proof: Suppose I is a non-zero ideal of Mn(F), let A = (aij) 

be a non-zero element of I and let ars  0. By pre- and 

post- multiplying by suitable matrices we can make all 

other components zero. By multiplying by a suitable 

scalar matrix we can make this non-zero component take 

any desired value, and by pre- and post- multiplying by 

suitable permutation matrices we can move this to any 
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position. All these products will remain within I. Now, 

adding such matrices together we can thus obtain any n  

n matrix and so I = Mn(F). 

 

If G is a (multiplicative) group, we define the 

group ring to be the set of all formal linear combinations 

of the elements of G with addition and multiplication 

defined in the obvious way. It is denoted by FG. 

So FG = {igi | i F, gi  G}. The group 

elements are a basis for FG and so, if G is finite, FG is 

finite-dimensional. 

 

A ring R has the descending chain condition 

(DCC) on right ideals if every descending chain of right 

ideals has a least. That is, if 

I0  I1  I2  … 

is an infinite sequence of right ideals, each containing the 

next, then for some n, In = In+1 = …  Another way of 

expressing DCC on right ideals is that there’s no infinite 

strictly descending sequence of right ideals: 

I0 > I1 > I2 > … 

   

DCC on left ideals and DCC on 2-sided ideals are 

defined similarly. A ring R has the ascending chain 

condition (ACC) on right ideals if every ascending chain 

of right ideals has a greatest. ACC on left ideals and ACC 

on 2-sided ideals are defined similarly. 
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Example 8: ℤ has the ascending chain condition but not 

the descending chain condition on ideals. 

Proof: The ideals of ℤ all have the form mℤ for m  ℤ, 

where m  0. 

If m ℤ < n ℤ then n is a proper divisor of m, and so n < m. 

If there was an infinite strictly increasing ideals in ℤ then 

there would be an infinite strictly decreasing chain of non-

negative integers. 

However ℤ > 2 ℤ > 4 ℤ > 8 ℤ > … is an infinite strictly 

descending chain of ideals and so ℤ does not satisfy the 

DCC. 

 

§1.6. Algebras 
 Most rings of any interest come with even more 

than just the ring structure. They’re also vector spaces. An 

algebra over a field F, or an F-algebra, is a ring A that is 

also a vector space over F. Definitions for rings extend 

quite naturally to algebras, such as subalgebras, algebra 

homomorphisms (ring homomorphisms that are also 

linear transformations), and direct sums. Algebra ideals 

are ring ideals that are subspaces and quotient algebras are 

formed in the usual way. As you’d expect, all three 

isomorphism theorems hold. 

 If you think of some of the important rings you’ve 

met you’ll find that they are automatically algebras. 

Fields are algebras over themselves. The ring of 

polynomials over a field F is an algebra over F. The ring 

of n  n matrices over F is an F-algebra. One can make 

every vector space into an algebra (a zero algebra) by 
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defining every product to be zero. Not all interesting 

rings, however, are algebras. For example the archetypal 

ring, the ring of integers is not an algebra. 

 The theory of algebras is not really a separate study 

from the theory of rings. In fact often, we use the terms 

interchangeably (provided the ring can easily be viewed 

as an algebra). 

 

 An important way of constructing examples of 

rings is to take a semigroup and to take all formal linear 

combinations of these elements over some field. A 

semigroup algebra is one formed from a semigroup in 

the following way. If X is a semigroup and F is a field, 

then FX = {1x1 + … + nxn | n  0 and i  F, xi  X for 

each i}. Here, if n = 0 we take the empty sum to be the 

zero element. 

 If X is the semigroup {1, x, x2, …,}, under the usual 

multiplication, and F is any field, then FX is simply F[x] 

the ring (in fact the algebra) of polynomials over F. 

You can construct the ring of n  n matrices over F 

in this way by taking the semigroup made up from the 

standard basis matrices Eij that have a 1 in the i-j position 

and zeros elsewhere. 

 

 One can construct algebras one has never met in 

this way. 

 

Example 9: Let S be any set and define multiplication by: 

xy = y for all x, y  S. 
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The associative law holds for S and so S is a semigroup. 

We can make S into an algebra, ℤ3S. In this algebra: 

(2s + t)(s + 2t) = 2s2 + ts + 4st + 2t2 

                        = 2s2 + ts + st + 2t2 since 4 = 1 in ℤ3 

                        = 2s + s + t + 2t using the semigroup 

                                                                   multiplication 

                        = 3s + 3t = 0 

 

A special case of semigroup algebras are group 

algebras. These are simply algebras where we start with a 

group G as our semigroup. Algebras of the form FG, 

where F is a field and G is a group, are important in the 

Representation Theory of groups. These are studied in my 

set of notes on Representation Theory. 

 

§1.7. Some Interesting Examples of Rings 
 We finish the chapter with more examples of rings 

and algebras. These are in different ways quite curious 

and some will be used in later chapters as counter-

examples. 

 

Example 10: The Prüfer 2-group is: 

P = a0, a1, a2, .. | 2a0 = 0, 2ai+1 = ai for each i 

It is an infinite abelian group. Moreover it’s not even 

finitely generated. Yet every proper subgroup is a finite 

cyclic group of order 2n, for some n. Therefore all the 

elements have finite order. 
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 The generator a0 has order 2, a1 has order 4, and so 

on. In general the generator an has order 2n+1. The 

elements are of the form: 

m0a0 + m1a1 + … + mkak for some k, with the mi  ℤ. 

But since 2ai+1 = ai for all i, and 2a0 = 0, we may assume 

that each mi = 0 or 1. 

 So every element can be written in the form: 

an1 + an2 + … + ank for some k, where 

n1 < n2 < … < nk. 

Then (a2 + a3 + a4) + (a1 + a3 + a4) = a1 + a2 + 2a3 + 2a4 

                                                       = a1 + a2 + 3a3 

                                                       = a1 + 2a2 + a3 

                                                       = 2a1 + a3 

                                                       = a0 + a3. 

Now consider the zero ring on P. So the product of 

any two generators aiaj = 0. Then P2 = 0. 

 

Example 11: Let  = 






2m

2n + 1
 with m, n  ℤ. 

It’s easy to show that this is a subring of ℚ. 

It’s not an algebra over ℚ since R contains 
1

3
  but not 

1

6
 . 

And since ℚ has no proper subfields, it can’t be an algebra 

over any other field. So this is a good counter-example to 

show that some rings are not algebras. Yet we file this 

example away as a counterexample to something else in 

a later chapter. 
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Example 12: Matrices are normally finite, but there’s no 

reason why we can’t consider infinite matrices as infinite 

arrays, with infinitely many rows and columns. The only 

trouble that can arise is if we want to make a ring out of 

these because a product will involve infinitely many 

terms. One way to get a ring out of infinite matrices is to 

restrict the rows to only have finitely many non-zero 

entries. We will still have infinitely many terms if we 

multiply two such matrices, but all but a finite number of 

these will be zero. 

 A row finite matrix, over a field F, is an infinite 

matrix in which every row has only finitely many non-

zero components. That is, for all r there exists N such that 

ars = 0 whenever s > N. The number N depends on r and 

it might be that, for example N = r. In fact such a matrix 

would be lower-triangular, with zeros above the diagonal. 

 The set of all row finite matrices over F is then an 

F-algebra. The set of all lower-triangular matrices over F 

will be a subalgebra. 

 

Example 13: Let ℤ2x, y be the ℤ2 algebra of all rational 

functions, over ℤ2, in non-commuting indeterminates x, y. 

These are formal fractions of the form 
f(x, y)

g(x, y)
  where 

f(x, y) and g(x, y) are polynomials, over ℤ2 in the non-

commuting variables x, y. A typical element could be: 

 
x5y + yxy2

xy + yx
 . 
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These add and multiply in the obvious way, but without 

the benefit of the equation xy = yx. These fractions are 

formal fractions so that we can’t even cancel by x in the 

above example. So, for example: 
xy

y + 1
  + 

y2

 xy + yx
  = 

xy(xy + yx) + y2(y + 1)

(y + 1)(xy + yx)
  

                         = 
xyxy + xy2x + y3 + y2

yxy + y2x + xy + yx
  

Example 14: Let X = {ax | x  ℚ and 0 < x < 1}. That is, 

X consists of indeterminates indexed by the rational 

numbers between 0 and 1 (excluding both). Examples of 

elements of X will be a0.5, a0.3 and  a0.0001. 

We make X into a semigroup be defining: 

ax ay = 


ax+y if x + y < 1

0 if x + y  1
. 

One needs to check that this operation is associative. But 

it’s not difficult to see that, regardless of brackets, any 

product is aT where T is the sum of the subscripts in the 

product, or 0 if this total is greater than or equal to 1. 

So a0.3 a0.6 = a0.9 and (a0.6)
2 = 0 since 1.2 > 1. 

 

Consider the semigroup algebra ℝX. This will be an ℝ-

algebra. An example of a calculation in this algebra is:  

(a0.2 + 2a0.6)(3a0.1 + a0.5) 

         = 3a0.2 a0.1 + a0.2 a0.5 + 32a0.6 a0.1 + 2a0.6 a0.5  

         = 3a0.3 + ( + 32)a0.7. 

 

 This is an example of a ring in which every element 

is nilpotent, while the ring itself is not. 
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Example 15: Let R = {ax + by | a, b  ℚ} where: 

x2 = x, yx = y, xy = y2 = 0. 

This looks like it be yet another example of a semigroup 

algebra, but note that {x, y} is not a semigroup since it 

doesn’t contain 0, yet y2 = 0. 

The associative law isn’t obvious but we can prove 

it as follows. 

• (xx)x = x(xx) simplifies to x = x, 

• (yx)x = y(xx) simplifies to y = y 

• all other instances of the associative law involving x, y 

simplify to 0 = 0. 

 

Another proof of the associative law involves 

constructing an isomorphic model of this ring within the 

ring of 22 matrices by taking x =  






1 0

00
  and y = 







0 0

10
 . 

As well as checking that they satisfy the equations we 

must also check that they are additively independent. 

 So R is a ℚ-algebra. It looks like it might be an 

example of an algebra that’s not a semigroup algebra. Yet, 

if we take A = x and B = x + y we get A2 = AB = A, BA 

=  B2 and so {A, B} is a semigroup, S with multiplication 

table: 

 A B 

A A A 

B B B 
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Since {A, B} is a basis for R, R is the semigroup algebra 

ℚS. 

 

EXERCISES FOR CHAPTER 1 
 

Exercise 1: Which of the rings of order 4 are zero rings, 

commutative rings, rings with 1, integral domains, 

nilpotent, simple? 

 

Exercise 2: Find all the non-trivial proper left ideals, right 

ideals, 2-sided ideals of the rings R1 to R11, of order 4. 

 

Exercise 3: Show that no two rings R1–R11 are 

isomorphic. 

HINT: Find ring-theoretic properties that distinguish 

them, such as 

• Is the ring under addition cyclic? 

• Does the ring have a 1? 

• Is the ring a zero ring? 

• Is the ring a field? 

• Does the ring have nilpotent elements? (These are non-

zero elements r where rn = 0 for some n.) 

 

Exercise 4: Show that I = 






*  0

*  0 , meaning the set of all 

matrices of the form 






a  0

b  0
, is a minimal left ideal of the 

ring R = M2(F), for any field F. 
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Exercise 5: 

(a) Prove that R = {ax + by | a, b  ℚ} is a ℚ-algebra 

where: x2 = 0, xy = yx = x, y2 = y. 

(b) Show that the only non-zero idempotent of R (that’s 

an element that equals its own square) is y. 

(c) Show that R is not a semigroup algebra ℚX for any 

semigroup X.  

 

 

SOLUTIONS FOR CHAPTER 1 
Exercise 1: 

Zero: R1, R4. 

Commutative: R1,l R2, R3, R4, R5, R6, R7, R9, R10. 

Ring with 1: R2, R6, R7, R9. 

Integral Domain: R7. 

Nilpotent: R1, R3, R4. 

Simple: R7. 

 

Exercise 2: 

R1 – R3: Here the additive group is ℤ4, and so the only 

possibility is {0, 2x}. 

In fact, {0, 2x} is a 2-sided ideal in all three cases. 

 

For the rings R4-R11 you scan the rows for right ideals 

and the columns for left ideals. 

{0, u}, where u = a, b or a+ b, will be a right ideal if the 

elements in the u-row are 0 or u. 

{0, u}, will be a right ideal if the elements in the u-column 

are 0 or u. 



 44 

R4: {0, a}, {0, b} and {0, a + b} are all 2-sided ideals. 

R5, R6: {0, a}, {0, b} are both 2-sided ideals. 

R7: No ideals, left, right or 2-sided. Note that R7 is a field 

and field never have proper non-trivial ideals. 

R8: {0, a} and {0, b} are left ideals. {0, a + b} is a 2-sided 

ideal. 

R9: {0, a} is a 2-sided ideal. 

R10: {0, b} is a 2-sided ideal. 

R11: {0, a} and {0, b} are right ideals and {0, a + b} is a 

2-sided ideal. 

 

Exercise 3: We just need to investigate various ring-

theoretic properties to distinguish them. 

 

 cyclic 

under 

+ 

has 

1 

zero 

ring? 

Nilpt 

elts? 

R1     

R2     

R3     

R4     

R5     

R6     

R7     

R8     

R9     

R10     

R11     



 45 

By considering these properties alone, R1-R5 and R9 are 

not isomorphic to any other. 

We still need to distinguish between R6 and R7 and 

between R8, R10 and R11. 

Now R7 is a field and R6 is not, so they are not 

isomorphic. 

R10 is commutative, while R8 and R11 are not. 

So this just leaves the question as to whether R8 and R11 

are isomorphic. In fact they are anti-isomorphic in that 

there exists :R8 → R11 such that (xy) = (y)(x). 

But R8 has 2 one-sided left ideals{0, a} and {0, b} but 

R11 has no one-sided left ideals (though it has 2 one-sided 

right ideals). 

 

Exercise 4: Clearly I is an abelian group under addition. 

Since 






a  b

c  d 





u  0

v  0
 = 







au + bv    0

cu + dv    0
  I, this shows that I is 

a left ideal. 

NOTE: We don’t have to check that I is closed under 

multiplication because that is included in the left ideal 

calculation. 

To show minimality we need do more than show that I 

has no proper non-trivial ideal, because an ideal of I need 

not be an ideal of R. In fact 






0  0

*  0  is an ideal of I, but not 

of R. 

 

Now suppose that J is an ideal of R with 0 < J. 
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Let 






a  0

b  0
 be a no-zero element of J. 

Since 






0  1

1  0 





a  0

b  0
 = 







b  0

a  0
, we may assume that a  0. 

Now 






a−1  0

0   0 





a  0

b  0
 = 







1  0

0  0
  J and 

           






0  1

1  0 





1  0

0  0
 = 







0  0

1  0
  J. 

Hence 






x  0

y  0
 = x







1  0

0  0
 + y







0  0

1  0
  J and so, J = I. 

 

Exercise 5: (a) Everything is obvious except the 

associative law for the two basis elements x, y. There are 

8 instances to check. 

(xx)x = 0 = x(xx); 

(xx)y = 0 = x(xy); 

(xy)x = 0 = x(yx); 

(xy)y = x = x(yy); 

(yx)x = 0 = y(xx); 

(yx)y = x = y(xy); 

(yy)x = x = y(yx); 

(yy)y = y = y(yy). 

 

(b) Suppose that (ax + by)2 = ax + by. 

Then a2x2 + b2y2 + abxy + abyx = ax + by. 

Hence 2abx + b2y = ax + by and since {x, y} is a basis: 

2ab = a and b2 = b. 

Hence b = 0 or 1. 
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If b = 0 then a = 0 and so a = 0 which can’t be part of a 

basis. 

So b = 1 and hence 2a = a and so a = 0. Hence x = y. 

 

(c) For R to be a semigroup algebra we would need to 

have a basis {A, B} that’s closed under multiplication. 

Let A = ax + by and B = cx + dy. Now A2 = A or B. 

 

Case 1: A2 = A: 

By (2), A = y and B2 = A = y. 

Since B must be linearly independent from A we must 

have c  0. 

Now B2 = d 2y + 2cdx and hence 2cd = 0 and d 2 = 1. 

Since c  0 the first equation gives d = 0, contradicting 

the second equation. 

So case 1 cannot arise. 

 

Case 2: A2 = B: 

Then 2ab = c and b2 = d. 

 

Case 2A: B2 = B: Then, by (2), B = y and so 

c = 0 and d = 1. 

Hence ab = 0 and b2 = 1. Thus a = 0 and b =  1. 

This would mean that A =  y. 

But then A, B would not be linearly independent. So this 

case cannot arise. 

 

Case 2B: B2 = A: 

Then 2cdx + d2y = ax + by and so 2cd = a and d2 = 1. 
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So we have four equations: 

2ab = c,   b2 = d,   2cd = a and d2 = 1. 

Clearly d  − 1 so d = 1. 

Then b =  1 and a = 2c = 4ab =  4a whence a = c = 0, 

contradicting the fact that {A, B} is linearly independent. 

 


