
 143

8. FREE GROUPS

§8.1. Definition
 Consider a presentation with no relations or relators

such as x1, x2, … , xn| . We call this the free group on the

generators. Clearly free groups are infinite (except for the

trivial case  |  where there are no generators. This is the

trivial group, with one element).

The free group on one generator, such as A | , is

the infinite cyclic group, isomorphic to ℤ (under

addition). Defining

free groups in terms

of presentations is

good intuitively but

it is the wrong way

round. Remember

that our discussion of

group presentations was very informal. To define

presentations rigorously we need to do it in terms of free

groups. So we need a very precise and rigorous way of

defining free groups, which is what we will be doing here.

 Let X be a set and let X−1 be a set, disjoint from X,

which is in 1-1 correspondence with X. Let the element

of X−1 that corresponds to x  X be denoted by x−1. And

if y = x−1 we define y−1 to be x.

 144

Although x−1 will ultimately become the inverse of

x, at this stage I haven’t defined a binary operation, so we

can’t interpret it as an inverse yet.

 I’ll construct a group, generated by X, in which the

inverse of x will be x−1 and where no relations hold except

for those of the form xx−1 = x−1x = 1, for x  X, or

consequences of them. This will be called the free group

on X.

A word on X is a string of symbols, each of which is in

X or in X−1.

Example 1:

Suppose X = {a, b, c} and

 X−1 = {a−1, b−1, c−1}.

All six of these symbols are purely formal symbols, with

no meaning. Then ab−1aa−1cac−1bb−1cc is a word on X.

We’d like to be able to cancel this down to ab−1cac but as

yet we have no binary operation so the equation ab−1aa−1

= ab−1 as yet has no meaning.

Counting a−1, b−1 and c−1 as single symbols we have

ab−1aa−1 as a string of length 4 and ab−1 as a string of

length 2, so as strings they’re clearly not equal.

 145

 I define an inverse pair to be a string of the form

xx−1 or x−1x for some x  X. I now define two words on X

to be adjacent if one has the form ab while the other has

the form awb where a, b are words on X and w is an

inverse pair. I’ll write u  v if they’re adjacent. What we

call ‘cancellation’ is a process of removing inverse pairs

from a string.

 An equivalence sequence is a sequence of words

with consecutive elements adjacent. It’s monotonic if

either each term is shorter than the next or if each term is

longer than the next.

Example 2: ab−1aa−1cac−1bb−1cc → ab−1aa−1cac−1cc

 → ab−1cac−1cc

 → ab−1cab−1bc−1cc

 → ab−1cab−1bc

 → ab−1cac

is an equivalence sequence.

It’s not monotonic because the lengths are 11, 9, 7, 9, 7

and 5 respectively.

On the other hand:

ab−1aa−1cac−1bb−1cc → ab−1aa−1cac−1cc

 → ab−1cac−1cc

 → ab−1cac, and its reversal, are

monotonic.

 146

 Whenever we cancel we reduce the length by 2 and

whenever we insert an inverse pair we increase the length

by 2. Normally in cancellation we never insert an inverse

pair but it isn’t obvious that one needn’t do so. Perhaps

introducing an inverse pair at some stage will give us

additional symbols whereby we can come down a

different cancellation path and arrive at a shorter string.

In climbing to the highest point of a mountain you often

have to go downhill before you can go up higher than

before.

 Here’s an analogy. Suppose you had a matrix in

which A6 = A2 and A9 = A3. Because A might be singular

(ie. have no inverse) you wouldn’t be justified in

cancelling A’s.

Now given the expression A5 you can write is as a

smaller power by the following equivalence sequence

using the above relations:

A5 = A2A3 = A6A3 = A9 = A3. Note that we had to increase

the power before decreasing it again. There is in fact no

monotonic sequence, which can take us from A5 to A3

using the above relations.

 In the case of inverse pairs it does turn out that

there’s no need to make the string longer before making

it shorter again.

 A reduced word is one that contains no inverse

pair. A reduced word is one where no cancellation is

 147

possible. Words that are adjacent to a reduced word must

be longer than it.

Theorem 1: Every equivalence sequence can be replaced

by one where the deletions of inverse pairs all precede the

insertions.

Proof: If a, b, c are adjacent words in an equivalence

sequence, with b longer than either a or c, then b is

obtained from a by inserting an inverse pair and c is

obtained from b by removing an inverse pair (not

necessarily the same one).

 For example, we might have:

a = y−1zz−1x, b = y−1x−1xzz−1x and c = y−1x−1xx.

 If these pairs are disjoint, as in the above example,

the sequence can be modified by carrying out the deletion

first.

In the above example we could take b = y−1x. The

sequence a, b, c would still be an equivalence sequence.

If the deletion simply removes the inserted inverse

pair then a = c and we can shorten the equivalence

sequence by removing b and c.

The remaining case is where just one symbol in the

inserted inverse pair belongs to the deleted pair. For

example we might have a = y−1x−1x, b = y−1x−1xx−1x and

c = y−1x−1x.

In going from b to c there are two possible inverse

pairs that could have been removed and the x−1 that

remains in c could be either of the two x−1’s in b.

 148

In this case we must have, for some words u, v,

either:

a = uxv, b = uxx−1xv and c = uxv or

a = ux−1v, b = ux−1xx−1v = ux−1v.

In the first case we inserted an xx−1 inverse pair and

deleted an x−1x pair and in the second case we inserted an

x−1x pair and removed an xx−1 pair. Although we didn’t

remove precisely the same inverse pair that we inserted,

the effect is the same as if we did. In both cases a = c and

we can shorten the equivalence sequence by removing b

and c.

Corollary: Every equivalence sequence between a word

and a reduced word can be replaced by a monotonic one.

 We say that two words u, v are equivalent if there’s

an equivalence sequence from one to the other. This is

clearly an equivalence relation. Let F(X) denote the set of

equivalence classes and let [w] denote the equivalence

class containing the word w.

Theorem 2: Every word is equivalent to a unique reduced

word.

Proof: The fact that every word is equivalent to a reduced

word is obvious. Just remove inverse pairs until there are

no more left. The uniqueness follows from the fact that if

w is equivalent to two different reduced words they must

be equivalent to one another. But there is no monotonic

 149

equivalence sequence between two reduced words. (One

of them would have to be adjacent to a shorter word.)

We define the product of these equivalence classes

by [u][v] = [uv]. As usual we must check that this

operation is well-defined, since it’s defined in terms of

class representatives.

Theorem 3: If u is equivalent to u and v is equivalent to

v then uv is equivalent to uv.

Proof: We simply convert u to u and v to v

 independently.

 Under this operation the set F(X) is a group, with

[] being the identity (here  is the null string). The

inverse of [x1 ... xn], where each xi is a generator or the

inverse of a generator, is clearly [xn
−1 ... x1

−1]. This is

because the strings:

 x1 ... xnxn
−1 ... x1

−1 and

 xn
−1 ... x1

−1x1...xn

are both equivalent to .

 The group F(X) so formed is called the free group

on X. If there are n generators, F/F is isomorphic to the

direct sum of n copies of ℤ and so a free group on a certain

number of generators cannot be isomorphic to the free

group on any other number of generators. We may

therefore unambiguously define the rank of the free

 150

group F(X) to be |X|, the cardinal number, or size, of X.

We denote the free group on n generators by Fn.

Example 3: F0 is the trivial group and F1  ℤ. F0 is the

only finite free group. Both F0 and F1 are the only abelian

free groups.

Theorem 4: Every group is a quotient of a free group.

Proof: If G is a group then F(G) is the free group on the

set G (ignoring the group structure). Its elements are

reduced words on the elements of G as meaningless

symbols. If we now interpret the symbols according to the

multiplication within G we get an element of G. The map

 that takes a string in the free group to its evaluation in

G is clearly a homomorphism whose kernel consists of all

those group words that collapse to the identity when

evaluated in G. By the First Isomorphism Theorem,

F(G)/ker()  G.

 So quotients of free groups can be any arbitrary

group. By contrast, as we’ll show, subgroups of free

groups must themselves be free.

Example 4: Let G = D8 = A, B | A4, B2, (AB)2, the

dihedral group of order 8. The elements are:

 g1 = 1, g2 = A, g3 = A2, g4 = A3,

 g5 = B, g6 = AB, g7 = A2B, g8 = A3B.

Let X = {g1, g2, g3, g4, g5, g6, g7, g8}.

 151

Then F(X) is the free group of rank 8 whose elements are

words in g1, … , g8, g1
−1, ... , g8

−1.

Suppose u = g3g7
−1g2g6

−1g8.

Then (u) = (A2)(A2B)−1 (A)(AB)−1(A3B)

 = A2BA−1BA2B

 = AB

 = g6.

The kernel of  will be generated by conjugates of the

words: g1, g3g2
−1g2

−1, g4g3
−1g2

−1, g6g5
−1g2

−1, g7g5
−1g3

−1,

g8g5
−1g4

−1, g4g2, g5g5, g2g5g2g5. The first six of these

express the gi in terms of g2 and g5 (which we were writing

as A, B respectively). The last three correspond to the

three defining relations for D8.

 Of course we can represent this dihedral group as a

quotient of the free group of rank 2, on the generators A,

B. In this case the normal subgroup is generated by the

conjugates of A4, B2 and ABAB.

§8.2. Presentations of Groups
 We’ve become familiar with the notion of a group

presentation but we have been just a little vague as to what

it really is. Now that we have introduced free groups we

can say precisely what X | R means.

 Suppose X is a set and R is a set of words on X

(the relators of the presentation). Let RG denote the set of

all products of conjugates of elements of R, and their

inverses, by elements of X.

 152

Example 5: If X = {A, B} and R = {B2, ABAB} then an

example of an element of RG is

(A2B)−1(ABAB)(A2B).(ABA5)−1(B2)(ABA5).

 A−1(ABAB)−1A

It’s clear that in any group where ABAB = 1 and B2 = 1

then such elements will be 1 as well. Now RG is a normal

subgroup of F(G) (a product of products is a product and

a conjugate of a conjugate is a conjugate). It is in fact the

smallest normal subgroup of F(G) that contains R. It’s

precisely the set of words that are forced to be trivial by

the relators in R.

We now define X | R to be F(X)/RG.

§ 8.3. Subgroups of Free Groups
 Every group is a quotient of a free group. But

subgroups of free groups are not so universal. In fact,

every subgroup of a free group is free. I won’t prove this

in the general case, but only for subgroups of finite index

in free groups of finite rank.

 It would seem very natural to believe that if F is

free and H is a subgroup of F then rank(F)  rank(G).

After all it is true for finite-dimensional vector spaces that

if U is a subspace of V then dim(U)  dim(V) and rank is

a very similar concept to dimension. However it’s

certainly not the case here.

 153

Example 6: Let F be the free group on {A, B} and let

H = BAB, BBAABB, BBBAAABBB. Then rank(F) = 2

while rank(H) = 3.

 To check that indeed rank(H) = 3 we must show

that {BAB, BBAABB, BBBAAABBB} is a free set of

generators for H. In other words we must show that if we

have a word in these three generators we can recover the

way it was generated.

 In any reduced word in these three generators the

B’s that will come between the blocks of A’s so will never

vanish. As a consequence the A’s will remain intact and

we can recover the original unreduced word.

For example, concentrating on the powers of A we

can see that BAB3A2B−1A−3B−1A2B2 can only have come

from (BAB)(BBAABB)−1(BBAABB).

 Let K = BAB, BBAABB, BBBAAABBB, ….

Then, in a similar fashion to the above, we can show that

these generators are free and so K is a free group of

infinite rank.

 So free groups of finite rank can have subgroups of

infinite rank. However in such cases the index must also

be infinite. A subgroup H of finite index in a free group

G of finite rank must be a free group of finite rank, though

the rank of H can be larger than that of G.

 Suppose H is a subgroup of rank h in a free group

F of rank r. We form a graph , whose vertices are the

right cosets of H in F. For every generator x and for every

 154

vertex Hu we define an edge from Hu to Hux. We label

this by the generator x.

 This graph has h vertices and rh edges.

Example 7:

Let F = F(a, b) and let H = aaa, bb, ababG. This is the

group generated by all the conjugates of aaa, bb and abab.

Then G/H  A, B | A3, B2, (AB)2, the dihedral group of

order 6. Thus r = 2 and, since we have 6 right cosets, h =

6. The graph  is as follows:

 For the moment consider  as an undirected graph.

That is, ignore the directions of the arrows. Suppose that

T is a spanning tree in . A tree is a connected graph that

has no loops and a spanning tree is one that connects

every vertex to every other.

H Hb

Ha a
Hab

a

b

a

Ha2

Ha2

b b

a

a

b

b

b

a

b

 155

Example 7 (continued): The following is a spanning tree

in the above graph .

 For each coset Hu consider the unique path in T

from H to Hu. The fact that there is a unique path is

because T has no loops. For each such path write down

the generators, or their inverses, which take us along this

path. If we follow an arrow we write down the

corresponding generator. If we have to go in the opposite

direction to an arrow we write down the inverse of the

corresponding generator. The word taking us from H to

the coset Hu will be in that coset. Note the special case of

the path from H to H. This path has length 0 and the

corresponding word is 1. The set of words will be a

transversal, that is, a set of coset representatives, one from

each coset.

H Hb

Ha
Hab

Ha2

Ha2

b

a

a

b

b

b

 156

Example 7 (continued):

In the above example we have the transversal:

{1, a, ab, aa, aab}.

These just happen to be the representatives we chose

when labelling the graph . They happen to be the most

convenient ones to use in this example. But we could have

chosen some other spanning tree and so produce some

other transversal. For example, consider the following

alternative spanning tree.

6. The graph  is as follows:

In this case our transversal is:

{1, a−1, a−1b, a−1ba, a−1bab, a−1ba2}

 A transversal obtained from a spanning tree has

what is called the Schreier property, or is a Schreier

transversal. A Schreier transversal is a transversal S

with the property that every initial segment of a word in

H Hb

Ha a
Hab

a

b

a

Ha2

Ha2

b

a

b

 157

S is also in S. The reason why a transversal obtained from

a spanning tree is a Schreier transversal is that every

initial segment corresponds to the unique path from H to

the corresponding coset.

Example 7 (continued): In the above transversal we

could replace a−1, by a2 because it’s in the same coset. The

set {1, a2, a−1b, a−1ba, a−1bab, a−1ba2} is a transversal, but

it no longer has the Schreier property.

 For each edge E in the graph  we define its slope,

(E), as follows. If E is the edge from Hu to Hv, following

the generator x then (E) is defined to be uxv−1. If we

denote by E−1 the opposite edge, going from Hv to Hu

following the inverse of a generator x−1 (this means

following the edge in the opposite direction to the arrow)

then (E−1) = vx−1u−1 = (uxv−1)−1 = (E)−1.

Example 7 (continued): In the above example, the slope

of the 12 edges is given by the following table. (The

slopes of the inverse edges are the inverses of these.)

 E u x v (E) = uxv−1

1 H → Ha 1 a a 1

2 H → Ha2 1 b b 1

3 Ha → Ha2 a a a2 1

4 Ha → Hab a b ab 1

5 Ha2 → H a2 a 1 a3

 158

 E u x v (E) = uxv−1

6 Ha2 → Ha2b a2 b a2b 1

7 Hb → Ha2b b a a2b bab−1a2

8 Hb → H b b 1 b2

9 Hab → Hb ab a b abab−1

10 Hab → Ha ab b a ab2a−1

11 Ha2b → Hab a2b a ab a2bab−1a−1

12 Ha2b → Ha2 a2b b a2 a2b2a−2

Theorem 2: Suppose H is a subgroup of index h of a free

group F and  is the graph whose edges have the form

Hu → Hux.

Let T be a spanning tree and let S be the corresponding

Schreier transversal. Let (E) denote the slope of the edge

E.

Then (E) = 1 if and only if E  T.

Proof: Suppose (E) = 1 where E is Hu → Hux = Hv and

u, v  S. The unique path from H to Hv must go via Hu

so E  T.

Conversely suppose that E  T. Then the unique

path from H to Hv goes via this edge and so ux  S. Since

ux and v are in the same coset and they both belong to the

transversal S, they are equal. Hence (E) = uxv−1 = 1.

 159

Theorem 3: (SCHREIER-NIELSEN) Every subgroup

of a free group is free. In particular if G is a free group of

rank r and H  G with |G:H| = h then H is a free group of

rank rh − h + 1.

Proof: Let F be a free group of rank r on the generators

x1, x2, ... , xr. Let H be a subgroup of finite index, h.

Consider the directed graph  whose vertices are the right

cosets of H in F and whose edges are of the form Ha →

Hax, where x is a generator.

Choose a spanning tree, T, in  and let S be the

corresponding Schreier transversal.

Let B = {(E) | E   − T}. Since  has rh edges

and T has h − 1 edges  − T has rh − (h − 1) edges and so

the number of elements of B is rh − h + 1. It remains to

show that B is a set of free generators for H. We must first

show that B generates H. Then we must show that there

are no relations between them.

Let h  H. Writing h as a reduced word y1y2… yk

where each yi is one of the generators or one of their

inverses, consider the path from H by following the yi.

Since Hh = H this path will both start and end with the

vertex H.

Suppose this path is:

 y1 y2 y3 yn−1 yn

 H → Hu1 → Hu2 → …. → Hun−1 → H

 160

The product of the corresponding (E)’s is

(1y1u1
−1)(u1y2u

−1)… (un−2yn−2un−1
−1)(un−1yn1−1) = h.

Hence B generates H.

Next we show that each (E) = uxv−1  B is reduced as

written.

Since u, v are reduced the only possibility for cancellation

in uxv−1 is for x to cancel with the last character of u or

the first of v−1.

In the first case u = u0x
−1 and so Hu0 = Hux = Hv.

Since u0 is an initial segment of u  S, u0  S.

But v  S, so u0 = v. Hence uyv−1 = 1, a contradiction.

In the latter case x−1 cancels with the last character of v

and so vx−1u−1 = 1 and so its inverse uxv−1 = 1, again a

contradiction.

 Suppose w = (u1y1v1
−1)(u2y2v2

−1) is a product of

elements of B or their inverses, with u1, u2, v1, v2  S and

y1, y2  X + X−1 (the disjoint union). By the definition of

B, neither factor is 1. Suppose that w  1. We will show

that when w is reduced the y1’s will not disappear.

Suppose y1 does cancel with a symbol in the second

factor. For the cancellation to reach back to y1 we must

have one of the following cases:

 161

Case 1: y1 cancels with a symbol in u2: Then v1
−1 has to

cancel with an initial segment of u2 and so v1y1
−1 is an

initial segment of u2. But Hu1y1 = Hv1 so Hu1 = Hv1y1
−1

and since both u1 and v1y1
−1 are in S they are equal. Hence

u1y1 = v1, a contradiction as the first factor is not 1.

Case 2: y1 cancels with y2: Then u2 = v1.

Now Hu1y1 = Hv1 whence Hu1 = Hv1y1
−1 = Hu2y2 = Hv2.

Since u1, v2  S they are equal and so w = 1, a

contradiction.

Case 3: y1 cancels with a symbol in v2
−1: Then y2 cancels

with a symbol in v1
−1. Thus u2y2 is an initial segment of

v1. But Hu2y2 = Hv2 and since both u2y2 and v2 are in S,

u2y2 = v2, a contradiction.

 Hence any non-trivial word in the elements of B

can’t cancel down to the identity.

Example 8: Let F = F(a, b) and let H = a2, ab, ba, b2.

What is the rank of H?

Solution: It might appear that {a2, ab, ba, b2} is a free set

of generators and that therefore rank(H) = 4. However this

is not so.

 Let w  F and let (w) be the length of w when

written out in terms of a’s and b’s and their inverses.

We’re counting a−1 and b−1 as single symbols.

Let (w) be (w) modulo 2.

 162

 Clearly  is a homomorphism from F to ℤ2. I’ll

show that ker() = H.

Suppose w  ker().

Then w = w1w2 … wk for some k where each wi has length

2. It remains to show that the words of length 2 are all in

H. This can be achieved by the following table.

aa (aa)

ab (ab)

ab−1 (ab)(bb)−1

ba (ba)

ba−1 (ba)(aa)−1

bb (bb)

a−1b (aa)−1(ab)

a−1a−1 (aa)−1

a−1b−1 (ba)−1

b−1a (bb)−1ba

b−1a−1 (ab)−1

b−1b−1 (bb)−1

 So H = ker() and so has index 2. By the Schreier

Nielsen theorem: rank(H) = 2.2 − 2 + 1 = 3.

So one of the generators aa, ab, ba and bb must be

expressible in terms of the other three. In fact this is so:

ba = (bb)(ab)−1(aa).

 163

§ 8.4. The Todd-Coxeter Algorithm

Revisited
 We’re now in a position to give a proper proof that

the Todd-Coxeter algorithm works, that is, if it terminates

it gives a group, H, which is isomorphic to the group G

being presented.

 Suppose the algorithm terminates. The resulting

group, H, is a group of permutations on the set of codes

and the number of codes is |H|. Since each element of G

is represented by at least one code |G|  |H| (and so is

finite).

 Let F be the free group on the set of generators.

Then G  F/R where R is the normal subgroup of F

generated by the relators.

Since H satisfies all the relations of the presentation

there’s a normal subgroup of F, containing R, such that H

 F/S  (F/R)/(S/R) so |H|  |F/R| = |G|. Hence |G| = |H|

and so S = R, whence G  H.

§ 8.5. Coset Enumeration
 Suppose we’re given a presentation  | R and a

subgroup H of G generated by a set of words S. We adapt

the algorithm given above (actually this is the version in

the original paper) so that the codes are assigned to left

cosets of H rather than to individual elements. The

integer code 1 represents the coset H and the number of

codes, if and when the process terminates, gives the

number of cosets of H in G, that is, |G:H|.

 164

 If we know |H| (and assuming it to be finite) we can

obtain |G| by multiplying |G:H| by |H|. If we simply want

the order of G, using a subgroup can drastically reduce

the amount of computation. Also this ‘coset enumeration’

can terminate in cases of a subgroup of finite index in an

infinite group.

 The only modification comes right at the

beginning.

COSET ENUMERATION

Generate chains of the form 11 for every generator

of H. Continue as before.

Example 9: G = A, B | A3, B3, (AB)2, H = AB

Generators

for H

Relators

for G

1A2B1 1A2A4A1 1B3B2B1 1A2B1A2B1

 2A4A1A2 2B1B3B2 2A4B6A3B2

 3A5A6A3 3B2B1B3 3A5B4A1B3

 4A1A2A4 4B6B5B4 4A1B3A5B4

 5A6A3A5 5B4B6B5 5A6B5A6B5

 6A3A5A6 6B5B4B6 6A3B2A4B6

 A B

 1 2 3 = H

 2 4 1 = HA

 3 5 2 = HB

 165

 4 1 6 = 2A

 5 6 4 = 3A

 6 3 5 = 4B

So |G:H| = 6. Since |H| = 2 we have |G| = 12.

Example 10: G = A, B|A4, A = B2, H = AB

Generators for H Relators for G

1A2B1 1A2A3A1A1 !! 1A2b3b1

 2A3A1A1A2 2A3b1b2

 3A1A1A2A3 3A1b2b3

 A B

 1 2 3 = H

 2 3 1 = HA = 1

 3 1 2 = HB = 1

Hence |G:H| = 1 and so H = G.

§ 8.6. Subgroups of Finite Index
 We can use the Todd-Coxeter algorithm to find all

of the subgroups of a given finite index in a given finitely

presented group. Suppose G is given by some

presentation and H is a subgroup H of index  n.

We carry out the Todd-Coxeter algorithm to assign

codes to the left cosets of H, but since we don’t know H

we have to do without the chains that would have come

 166

from its generators. So effectively we’re working with H

= 1 at this stage.

If the algorithm terminates with n codes or less then

|G|  n so the trivial subgroup is one of the subgroups

we’re looking for. Otherwise we’ll get to a stage where

we have n + 1 codes and if these codes refer to the left

cosets of a subgroup whose index is less than or equal to

n then two of these codes must be equal. Of course we

don’t know which two are equal, but there’s only a finite

number of possibilities to consider: 1 = 2, 1 = 3, 2 = 3 and

so on.

Now in each case the equality gives rise to a word

that must belong to H. So we now repeat the Todd-

Coxeter algorithm, this time including this newly found

word as one of the generators of H.

If the algorithm terminates with at most n codes

we’ll have found the generators of a subgroup whose

index is at most n. But if the algorithm continues until

n + 1 codes have been generated then again we must have

a pair of equal codes. And again we won’t know which

two codes are equal so we’ll have to split our working into

even more cases.

But the number of cases will be finite and in each

one we’ll have found a new word to add to our generators

for H. If we eventually reach a stage where the algorithm

terminates with n codes or fewer in each case then we’ll

have found all the subgroups whose index is at most n.

 167

 At each stage our working splits into finitely many

cases, depending on which two codes are equal. At the

next stage each of these cases splits into a finite number

of subcases, and so on. So our computation proceeds

along the edges of a tree, with each node representing a

separate Todd-Coxeter calculation.

 168

EXERCISES FOR CHAPTER 8

Exercise 1: For each of the following statements

determine whether it is true or false.

(1) The pair x−1x is an inverse pair.

(2) The word a−1baabb−1ab is a reduced word.

(3) The null string is a reduced word.

(4) The words x−1yxz and yz are equivalent.

(5) Free groups are non-abelian.

(6) Every group is a subgroup of some free group.

(7) If w is a group word and [w] is the set of all words that

are equivalent to w then [w] contains exactly one reduced

word.

(8) The rank of the free group X, Y, Z | Z = XY is 2.

(9) If two free groups are isomorphic the ranks are equal.

(10) If H  G and both are free groups then

rank(H)  rank (G).

Exercise 2: Find an equivalence sequence from the word

a−1bb−1acdc−1ccc−1d−1a−1 to a reduced word.

Exercise 3: Let G be the free group of rank 2 and let H be

the subset consisting of those elements where the sum of

the powers is even.

(a) Show that H is a subgroup of G;

(b) Find |G:H|;

(c) Use Schreier-Nielsen to find the rank of H;

(d) Find a set of generators for H.

 169

SOLUTIONS FOR CHAPTER 8

Exercise 1:

(1) TRUE

(2) FALSE

(3) TRUE

(4) FALSE

(5) FALSE: The free group of rank 1 is infinite cyclic.

(6) FALSE

(7) TRUE

(8) TRUE

(9) TRUE.

(10) FALSE.

Exercise 2: a−1bb−1acdc−1ccc−1d−1a−1

→ a−1acdc−1ccc−1d−1a−1

→ cdc−1ccc−1d−1a−1

→ cdcc−1d−1a−1

→ cdd−1a−1 → ca−1.

Exercise 3:

(a) Let G = A, B | . If w  G let p(w) be the sum of the

powers in w, mod 2. Since cancelling an inverse pair

doesn’t change p(w), p is well-defined.

If u = Am1Bn1 … and v = As1Bt1 … then

uv = Am1Bn1 … Am1Bn1 … and

p(uv) = p(u) + p(v).

 170

Hence p:G → ℤ2 is a homomorphism and H = ker(p) and

so is a normal subgroup of G.

(b) By the first isomorphism theorem G/H  ℤ2 and so

|G:H| = 2.

(c) Using the notation of the Schreier-Nielsen theorem,

r = h = 2 and so rank(H) = 3.

(d) H = A2, B2, AB.

