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8. FREE GROUPS 
 

§8.1. Definition 
 Consider a presentation with no relations or relators 

such as x1, x2, … , xn| . We call this the free group on the 

generators. Clearly free groups are infinite (except for the 

trivial case  |  where there are no generators. This is the 

trivial group, with one element). 

The free group on one generator, such as A | , is 

the infinite cyclic group, isomorphic to ℤ (under 

addition). Defining 

free groups in terms 

of presentations is 

good intuitively but 

it is the wrong way 

round. Remember 

that our discussion of 

group presentations was very informal. To define 

presentations rigorously we need to do it in terms of free 

groups. So we need a very precise and rigorous way of 

defining free groups, which is what we will be doing here. 

 

 Let X be a set and let X−1 be a set, disjoint from X, 

which is in 1-1 correspondence with X. Let the element 

of X−1 that corresponds to x  X be denoted by x−1. And 

if y = x−1 we define y−1 to be x. 
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Although  x−1 will ultimately become the inverse of  

x, at this stage I haven’t defined a binary operation, so we 

can’t interpret it as an inverse yet. 

 I’ll construct a group, generated by X, in which the 

inverse of x will be x−1 and where no relations hold except 

for those of the form xx−1 = x−1x = 1, for x  X, or 

consequences of them. This will be called the free group 

on X. 

  

A word on X is a string of symbols, each of which is in 

X or in X−1. 

 

 

Example 1: 

Suppose X = {a, b, c} and 

            X−1 = {a−1, b−1, c−1}. 

All six of these symbols are purely formal symbols, with 

no meaning. Then ab−1aa−1cac−1bb−1cc is a word on X.  

We’d like to be able to cancel this down to ab−1cac but as 

yet we have no binary operation so the equation ab−1aa−1 

= ab−1 as yet has no meaning. 

Counting a−1, b−1 and c−1 as single symbols we have 

ab−1aa−1 as a string of length 4 and  ab−1  as a string of 

length 2, so as strings they’re clearly not equal. 
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 I define an inverse pair to be a string of the form 

xx−1 or x−1x for some x  X. I now define two words on X 

to be adjacent if one has the form ab while the other has 

the form  awb  where  a, b  are words on X and  w  is an 

inverse pair. I’ll write u  v if they’re adjacent. What we 

call ‘cancellation’ is a process of removing inverse pairs 

from a string. 

 

 An equivalence sequence is a sequence of words 

with consecutive elements adjacent. It’s monotonic if 

either each term is shorter than the next or if each term is 

longer than the next. 

 

Example 2: ab−1aa−1cac−1bb−1cc → ab−1aa−1cac−1cc 

                                                     → ab−1cac−1cc 

                                                     → ab−1cab−1bc−1cc 

                                                     → ab−1cab−1bc 

                                                     → ab−1cac 

is an equivalence sequence. 

It’s not monotonic because the lengths are 11, 9, 7, 9, 7 

and 5 respectively. 

 

On the other hand: 

ab−1aa−1cac−1bb−1cc → ab−1aa−1cac−1cc 

                                 → ab−1cac−1cc 

                                 → ab−1cac, and its reversal, are 

monotonic. 
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 Whenever we cancel we reduce the length by 2 and 

whenever we insert an inverse pair we increase the length 

by 2. Normally in cancellation we never insert an inverse 

pair but it isn’t obvious that one needn’t do so. Perhaps 

introducing an inverse pair at some stage will give us 

additional symbols whereby we can come down a 

different cancellation path and arrive at a shorter string. 

In climbing to the highest point of a mountain you often 

have to go downhill before you can go up higher than 

before. 

 

 Here’s an analogy. Suppose you had a matrix in 

which A6 = A2 and A9 = A3. Because A might be singular 

(ie. have no inverse) you wouldn’t be justified in 

cancelling A’s. 

Now given the expression A5 you can write is as a 

smaller power by the following equivalence sequence 

using the above relations: 

A5 = A2A3 = A6A3 = A9 = A3. Note that we had to increase 

the power before decreasing it again. There is in fact no 

monotonic sequence, which can take us from A5 to A3 

using the above relations. 

 

 In the case of inverse pairs it does turn out that 

there’s no need to make the string longer before making 

it shorter again. 

 

 A reduced word is one that contains no inverse 

pair. A reduced word is one where no cancellation is 
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possible. Words that are adjacent to a reduced word must 

be longer than it. 

 

Theorem 1: Every equivalence sequence can be replaced 

by one where the deletions of inverse pairs all precede the 

insertions. 

Proof: If a, b, c are adjacent words in an equivalence 

sequence, with b longer than either a or c, then b is 

obtained from a by inserting an inverse pair and c is 

obtained from b by removing an inverse pair (not 

necessarily the same one). 

 

 For example, we might have: 

a = y−1zz−1x, b = y−1x−1xzz−1x and c = y−1x−1xx. 

 If these pairs are disjoint, as in the above example, 

the sequence can be modified by carrying out the deletion 

first. 

In the above example we could take b = y−1x. The 

sequence a, b, c would still be an equivalence sequence. 

If the deletion simply removes the inserted inverse 

pair then a = c and we can shorten the equivalence 

sequence by removing b and c. 

The remaining case is where just one symbol in the 

inserted inverse pair belongs to the deleted pair. For 

example we might have a = y−1x−1x, b = y−1x−1xx−1x and 

c = y−1x−1x. 

In going from b to c there are two possible inverse 

pairs that could have been removed and the x−1 that 

remains in c could be either of the two x−1’s in b. 
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In this case we must have, for some words u, v, 

either: 

a = uxv, b = uxx−1xv and c = uxv or 

a = ux−1v, b = ux−1xx−1v = ux−1v. 

In the first case we inserted an xx−1 inverse pair and 

deleted an x−1x pair and in the second case we inserted an 

x−1x pair and removed an xx−1 pair. Although we didn’t 

remove precisely the same inverse pair that we inserted, 

the effect is the same as if we did. In both cases a = c and 

we can shorten the equivalence sequence by removing b 

and c. 

 

Corollary: Every equivalence sequence between a word 

and a reduced word can be replaced by a monotonic one. 

 

 We say that two words u, v are equivalent if there’s 

an equivalence sequence from one to the other. This is 

clearly an equivalence relation. Let F(X) denote the set of 

equivalence classes and let [w] denote the equivalence 

class containing the word w. 

 

Theorem 2: Every word is equivalent to a unique reduced 

word. 

Proof: The fact that every word is equivalent to a reduced 

word is obvious. Just remove inverse pairs until there are 

no more left. The uniqueness follows from the fact that if 

w is equivalent to two different reduced words they must 

be equivalent to one another. But there is no monotonic 
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equivalence sequence between two reduced words. (One 

of them would have to be adjacent to a shorter word.) 

 

We define the product of these equivalence classes 

by [u][v] = [uv]. As usual we must check that this 

operation is well-defined, since it’s defined in terms of 

class representatives. 

Theorem 3: If u is equivalent to u and v is equivalent to 

v then uv is equivalent to uv. 

Proof: We simply convert u to u and v to v 

                                                                  independently. 

 

 Under this operation the set F(X) is a group, with 

[] being the identity (here  is the null string). The 

inverse of [x1 ... xn], where each xi is a generator or the 

inverse of a generator, is clearly [xn
−1 ... x1

−1]. This is 

because the strings: 

                         x1 ... xnxn
−1 ... x1

−1 and 

                         xn
−1 ... x1

−1x1...xn 

are both equivalent to . 

 

 The group F(X) so formed is called the free group 

on X. If there are n generators, F/F is isomorphic to the 

direct sum of n copies of ℤ and so a free group on a certain 

number of generators cannot be isomorphic to the free 

group on any other number of generators. We may 

therefore unambiguously define the rank of the free 
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group F(X) to be |X|, the cardinal number, or size, of X. 

We denote the free group on n generators by Fn. 

 

Example 3: F0 is the trivial group and F1  ℤ.  F0 is the 

only finite free group. Both F0 and F1 are the only abelian 

free groups. 

 

Theorem 4: Every group is a quotient of a free group. 

Proof: If G is a group then  F(G)  is the free group on the 

set G (ignoring the group structure).  Its elements are 

reduced words on the elements of G as meaningless 

symbols. If we now interpret the symbols according to the 

multiplication within G we get an element of G. The map 

 that takes a string in the free group to its evaluation in 

G is clearly a homomorphism whose kernel consists of all 

those group words that collapse to the identity when 

evaluated in G. By the First Isomorphism Theorem, 

F(G)/ker()  G. 

 

 So quotients of free groups can be any arbitrary 

group. By contrast, as we’ll show, subgroups of free 

groups must themselves be free. 

 

Example 4: Let G = D8 = A, B | A4, B2, (AB)2, the 

dihedral group of order 8. The elements are: 

                     g1 = 1, g2 = A, g3 = A2, g4 = A3, 

                     g5 = B, g6 = AB, g7 = A2B, g8 = A3B. 

 

Let X = {g1, g2, g3, g4, g5, g6, g7, g8}. 
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Then F(X) is the free group of rank 8 whose elements are 

words in g1, … , g8, g1
−1, ... , g8

−1. 

Suppose u = g3g7
−1g2g6

−1g8. 

Then (u) = (A2)(A2B)−1 (A)(AB)−1(A3B) 

                = A2BA−1BA2B 

                = AB 

                = g6. 

The kernel of  will be generated by conjugates of the 

words: g1, g3g2
−1g2

−1, g4g3
−1g2

−1, g6g5
−1g2

−1, g7g5
−1g3

−1, 

g8g5
−1g4

−1, g4g2, g5g5, g2g5g2g5. The first six of these 

express the gi in terms of g2 and g5 (which we were writing 

as A, B respectively). The last three correspond to the 

three defining relations for D8. 

 Of course we can represent this dihedral group as a 

quotient of the free group of rank 2, on the generators A, 

B. In this case the normal subgroup is generated by the 

conjugates of A4, B2 and ABAB. 

 

§8.2. Presentations of Groups 
 We’ve become familiar with the notion of a group 

presentation but we have been just a little vague as to what 

it really is. Now that we have introduced free groups we 

can say precisely what X | R means. 

 Suppose  X  is a set and  R  is a set of words on  X  

(the relators of the presentation). Let RG denote the set of 

all products of conjugates of elements of R, and their 

inverses, by elements of X. 
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Example 5: If X = {A, B} and R = {B2, ABAB} then an 

example of an element of RG is 

(A2B)−1(ABAB)(A2B).(ABA5)−1(B2)(ABA5). 

                                                             A−1(ABAB)−1A 

It’s clear that in any group where ABAB = 1 and B2 = 1 

then such elements will be 1 as well.  Now RG is a normal 

subgroup of F(G) (a product of products is a product and 

a conjugate of a conjugate is a conjugate). It is in fact the 

smallest normal subgroup of F(G) that contains R. It’s 

precisely the set of words that are forced to be trivial by 

the relators in R. 

 

We now define X | R to be F(X)/RG. 

 

§ 8.3. Subgroups of Free Groups 
 Every group is a quotient of a free group. But 

subgroups of free groups are not so universal. In fact, 

every subgroup of a free group is free. I won’t prove this 

in the general case, but only for subgroups of finite index 

in free groups of finite rank. 

 It would seem very natural to believe that if F is 

free and H is a subgroup of F then rank(F)  rank(G). 

After all it is true for finite-dimensional vector spaces that 

if U is a subspace of V then dim(U)  dim(V) and rank is 

a very similar concept to dimension. However it’s 

certainly not the case here. 
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Example 6: Let F be the free group on {A, B} and let 

H = BAB, BBAABB, BBBAAABBB. Then rank(F) = 2 

while rank(H) = 3. 

 To check that indeed rank(H) = 3 we must show 

that {BAB, BBAABB, BBBAAABBB} is a free set of 

generators for H. In other words we must show that if we 

have a word in these three generators we can recover the 

way it was generated. 

 In any reduced word in these three generators the 

B’s that will come between the blocks of A’s so will never 

vanish. As a consequence the A’s will remain intact and 

we can recover the original unreduced word. 

For example, concentrating on the powers of A  we 

can see that BAB3A2B−1A−3B−1A2B2 can only have come 

from (BAB)(BBAABB)−1(BBAABB).  

 Let K = BAB, BBAABB, BBBAAABBB, …. 

Then, in a similar fashion to the above, we can show that 

these generators are free and so K is a free group of 

infinite rank. 

 

 So free groups of finite rank can have subgroups of 

infinite rank. However in such cases the index must also 

be infinite. A subgroup H of finite index in a free group 

G of finite rank must be a free group of finite rank, though 

the rank of H can be larger than that of G. 

 

 Suppose H is a subgroup of rank h in a free group 

F of rank r. We form a graph , whose vertices are the 

right cosets of H in F. For every generator x and for every 
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vertex Hu we define an edge from Hu to Hux. We label 

this by the generator x. 

 This graph has h vertices and rh edges. 

 

Example 7: 

Let F = F(a, b) and let H = aaa, bb, ababG. This is the 

group generated by all the conjugates of aaa, bb and abab. 

  

Then G/H  A, B | A3, B2, (AB)2, the dihedral group of 

order 6. Thus r = 2 and, since we have 6 right cosets, h = 

6. The graph  is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 For the moment consider  as an undirected graph. 

That is, ignore the directions of the arrows. Suppose that 

T is a spanning tree in . A tree is a connected graph that 

has no loops and a spanning tree is one that connects 

every vertex to every other. 

  

H Hb 

Ha a 
Hab 

a 

b 

a 

Ha2 

Ha2

b b 

a 

a 

b 

b 

b 

a 

b 
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Example 7 (continued): The following is a spanning tree 

in the above graph . 

 

 

 

 

 

 

 

 

 

 

 

 

 For each coset  Hu  consider the unique path in T  

from H to Hu. The fact that there is a unique path is 

because T has no loops. For each such path write down 

the generators, or their inverses, which take us along this 

path. If we follow an arrow we write down the 

corresponding generator. If we have to go in the opposite 

direction to an arrow we write down the inverse of the 

corresponding generator. The word taking us from H to 

the coset Hu will be in that coset. Note the special case of 

the path from H to H. This path has length 0 and the 

corresponding word is 1. The set of words will be a 

transversal, that is, a set of coset representatives, one from 

each coset. 

  

H Hb 

Ha 
Hab 

Ha2 

Ha2

b 

a 

a 

b 

b 

b 
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Example 7 (continued): 

In the above example we have the transversal: 

{1, a, ab, aa, aab}. 

 

These just happen to be the representatives we chose 

when labelling the graph . They happen to be the most 

convenient ones to use in this example. But we could have 

chosen some other spanning tree and so produce some 

other transversal. For example, consider the following 

alternative spanning tree. 

6. The graph  is as follows: 

 

 

 

 

 

 

 

 

 

 

 

In this case our transversal is: 

{1, a−1, a−1b, a−1ba, a−1bab, a−1ba2} 

 

 A transversal obtained from a spanning tree has 

what is called the Schreier property, or is a Schreier 

transversal. A Schreier transversal is a transversal S  

with the property that every initial segment of a word in  

H Hb 

Ha a 
Hab 

a 

b 

a 

Ha2 

Ha2

b 

a 

b 
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S is also in S. The reason why a transversal obtained from 

a spanning tree is a Schreier transversal is that every 

initial segment corresponds to the unique path from H to 

the corresponding coset. 

 

Example 7 (continued): In the above transversal we 

could replace a−1, by a2 because it’s in the same coset. The 

set {1, a2, a−1b, a−1ba, a−1bab, a−1ba2} is a transversal, but 

it no longer has the Schreier property. 

 

 For each edge E in the graph  we define its slope, 

(E), as follows. If E is the edge from Hu to Hv, following 

the generator x then (E) is defined to be uxv−1. If we 

denote by E−1 the opposite edge, going from Hv to Hu 

following the inverse of a generator x−1 (this means 

following the edge in the opposite direction to the arrow) 

then (E−1) = vx−1u−1 = (uxv−1)−1 = (E)−1. 

 

Example 7 (continued): In the above example, the slope 

of the 12 edges is given by the following table. (The 

slopes of the inverse edges are the inverses of these.) 

 

 E u x v (E) = uxv−1 

1 H → Ha 1 a a 1 

2 H → Ha2 1 b b 1 

3 Ha → Ha2 a a a2 1 

4 Ha → Hab a b ab 1 

5 Ha2 → H a2 a 1 a3 
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 E u x v (E) = uxv−1 

6 Ha2 → Ha2b a2 b a2b 1 

7 Hb → Ha2b b a a2b bab−1a2 

8 Hb → H b b 1 b2 

9 Hab → Hb ab a b abab−1 

10 Hab → Ha ab b a ab2a−1 

11 Ha2b → Hab a2b a ab a2bab−1a−1 

12 Ha2b → Ha2 a2b b a2 a2b2a−2 

  

Theorem 2: Suppose H is a subgroup of index h of a free 

group F and  is the graph whose edges have the form 

Hu → Hux. 

Let T be a spanning tree and let S be the corresponding 

Schreier transversal. Let (E) denote the slope of the edge 

E. 

Then (E) = 1 if and only if E  T. 

Proof: Suppose (E) = 1 where E is Hu → Hux = Hv and 

u, v  S. The unique path from H to Hv must go via Hu 

so E  T. 

 

Conversely suppose that  E  T. Then the unique 

path from H to Hv goes via this edge and so ux  S. Since 

ux and v are in the same coset and they both belong to the 

transversal S, they are equal. Hence (E) = uxv−1 = 1. 
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Theorem 3: (SCHREIER-NIELSEN) Every subgroup 

of a free group is free. In particular if G is a free group of 

rank r and H  G with |G:H| = h then H is a free group of 

rank rh − h + 1. 

Proof:  Let F be a free group of rank r on the generators 

x1, x2, ... , xr. Let H be a subgroup of finite index, h. 

Consider the directed graph  whose vertices are the right 

cosets of H in F and whose edges are of the form Ha → 

Hax, where  x  is a generator. 

Choose a spanning tree, T, in  and let S be the 

corresponding Schreier transversal. 

Let B = {(E) | E   − T}. Since    has rh edges 

and T has h − 1 edges  − T has rh − (h − 1) edges and so 

the number of elements of B is rh − h + 1. It remains to 

show that B is a set of free generators for H. We must first 

show that B generates H. Then we must show that there 

are no relations between them. 

Let h  H. Writing h as a reduced word  y1y2… yk  

where each yi is one of the generators or one of their 

inverses, consider the path from H by following the yi. 

Since  Hh = H  this path will both start and end with the 

vertex H. 

 

Suppose this path is: 

             y1        y2         y3        yn−1         yn 

                   H → Hu1 → Hu2 → …. → Hun−1 → H 
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The product of the corresponding (E)’s is 

(1y1u1
−1)(u1y2u

−1)… (un−2yn−2un−1
−1)(un−1yn1−1) = h. 

Hence B generates H. 

 

Next we show that each (E) = uxv−1  B is reduced as 

written. 

 

Since u, v are reduced the only possibility for cancellation 

in  uxv−1 is for x to cancel with the last character of u or 

the first of  v−1. 

 

In the first case u = u0x
−1 and so Hu0 = Hux = Hv. 

Since u0 is an initial segment of u  S, u0  S. 

But v  S, so u0 = v. Hence uyv−1 = 1, a contradiction. 

 

In the latter case x−1 cancels with the last character of v 

and so  vx−1u−1 = 1  and so its inverse  uxv−1 = 1, again a 

contradiction. 

 

 Suppose w = (u1y1v1
−1)(u2y2v2

−1) is a product of 

elements of B or their inverses, with u1, u2, v1, v2  S and 

y1, y2  X + X−1 (the disjoint union).  By the definition of 

B, neither factor is 1. Suppose that w  1. We will show 

that when w is reduced the y1’s will not disappear. 

 

Suppose y1 does cancel with a symbol in the second 

factor. For the cancellation to reach back to y1 we must 

have one of the following cases: 



 161 

Case 1: y1 cancels with a symbol in u2: Then v1
−1 has to 

cancel with an initial segment of u2 and so v1y1
−1 is an 

initial segment of u2. But Hu1y1 = Hv1 so Hu1 = Hv1y1
−1 

and since both u1 and v1y1
−1 are in S they are equal. Hence 

u1y1 = v1, a contradiction as the first factor is not 1. 

 

Case 2:  y1 cancels with y2: Then u2 = v1. 

Now Hu1y1 = Hv1 whence Hu1 = Hv1y1
−1 = Hu2y2 = Hv2. 

Since u1, v2  S they are equal and so w = 1, a 

contradiction. 

 

Case 3: y1 cancels with a symbol in v2
−1: Then y2 cancels 

with a symbol in v1
−1. Thus u2y2 is an initial segment of 

v1. But Hu2y2 = Hv2 and since both u2y2 and v2 are in S,  

u2y2 = v2, a contradiction. 

 

 Hence any non-trivial word in the elements of B 

can’t cancel down to the identity. 

 

Example 8: Let F = F(a, b) and let H = a2, ab, ba, b2. 

What is the rank of H? 

Solution: It might appear that {a2, ab, ba, b2} is a free set 

of generators and that therefore rank(H) = 4. However this 

is not so. 

 Let w  F and let  (w) be the length of w when 

written out in terms of a’s and b’s and their inverses. 

We’re counting a−1 and b−1 as single symbols. 

Let (w) be (w) modulo 2. 
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 Clearly  is a homomorphism from F to ℤ2. I’ll 

show that ker() = H. 

 

Suppose w  ker(). 

Then w = w1w2 … wk for some k where each wi has length 

2. It remains to show that the words of length 2 are all in 

H. This can be achieved by the following table. 

 

aa (aa) 

ab (ab) 

ab−1 (ab)(bb)−1 

ba (ba) 

ba−1 (ba)(aa)−1 

bb (bb) 

a−1b (aa)−1(ab) 

a−1a−1 (aa)−1 

a−1b−1 (ba)−1 

b−1a (bb)−1ba 

b−1a−1 (ab)−1 

b−1b−1 (bb)−1 

 

 So H = ker() and so has index 2. By the Schreier 

Nielsen theorem: rank(H) = 2.2 − 2 + 1 = 3. 

 

So one of the generators aa, ab, ba and bb must be 

expressible in terms of the other three. In fact this is so: 

ba = (bb)(ab)−1(aa). 
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§ 8.4. The Todd-Coxeter Algorithm  

Revisited 
 We’re now in a position to give a proper proof that 

the Todd-Coxeter algorithm works, that is, if it terminates 

it gives a group, H, which is isomorphic to the group G 

being presented. 

 Suppose the algorithm terminates. The resulting 

group, H, is a group of permutations on the set of codes 

and the number of codes is |H|. Since each element of G 

is represented by at least one code |G|  |H| (and so is 

finite). 

 Let F be the free group on the set of generators. 

Then G  F/R where R is the normal subgroup of F 

generated by the relators. 

Since H satisfies all the relations of the presentation 

there’s a normal subgroup of F, containing R, such that H 

 F/S  (F/R)/(S/R) so |H|  |F/R| = |G|. Hence |G| = |H| 

and so S = R, whence G  H. 

 

§ 8.5. Coset Enumeration 
 Suppose we’re given a presentation  | R and a 

subgroup H of G generated by a set of words S. We adapt 

the algorithm given above (actually this is the version in 

the original paper) so that the codes are assigned to left 

cosets of H rather than to individual elements.  The 

integer code 1 represents the coset H and the number of 

codes, if and when the process terminates, gives the 

number of cosets of H in G, that is, |G:H|. 



 164 

 If we know |H| (and assuming it to be finite) we can 

obtain |G| by multiplying |G:H| by |H|. If we simply want 

the order of G, using a subgroup can drastically reduce 

the amount of computation. Also this ‘coset enumeration’ 

can terminate in cases of a subgroup of finite index in an 

infinite group. 

 The only modification comes right at the 

beginning. 

 

COSET ENUMERATION 

Generate chains of the form 11 for every generator 

of H. Continue as before. 

 

Example 9: G = A, B | A3, B3, (AB)2,    H = AB 

 

Generators 

for H 

Relators 

for G 

 

1A2B1 1A2A4A1 1B3B2B1 1A2B1A2B1  

 2A4A1A2 2B1B3B2 2A4B6A3B2  

 3A5A6A3 3B2B1B3 3A5B4A1B3  

 4A1A2A4 4B6B5B4 4A1B3A5B4  

 5A6A3A5 5B4B6B5 5A6B5A6B5  

 6A3A5A6 6B5B4B6 6A3B2A4B6  

 

  A B  

 1 2 3 = H 

 2 4 1 = HA 

 3 5 2 = HB 
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 4 1 6 = 2A 

 5 6 4 = 3A 

 6 3 5 = 4B 

 

So |G:H| = 6.  Since |H| = 2 we have |G| = 12. 

 

Example 10:  G = A, B|A4, A = B2,   H = AB 

Generators for H Relators for G  

1A2B1 1A2A3A1A1 !! 1A2b3b1  

 2A3A1A1A2 2A3b1b2  

 3A1A1A2A3 3A1b2b3  

 

  A B  

 1 2 3 = H 

 2 3 1 = HA = 1 

 3 1 2 = HB = 1 

 

Hence |G:H| = 1 and so H = G. 

 

§ 8.6. Subgroups of Finite Index 
 We can use the Todd-Coxeter algorithm to find all 

of the subgroups of a given finite index in a given finitely 

presented group. Suppose G is given by some 

presentation and H is a subgroup H of index  n. 

We carry out the Todd-Coxeter algorithm to assign 

codes to the left cosets of H, but since we don’t know H 

we have to do without the chains that would have come 
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from its generators. So effectively we’re working with H 

= 1 at this stage.  

If the algorithm terminates with n codes or less then 

|G|  n so the trivial subgroup is one of the subgroups 

we’re looking for. Otherwise we’ll get to a stage where 

we have n + 1 codes and if these codes refer to the left 

cosets of a subgroup whose index is less than or equal to 

n then two of these codes must be equal. Of course we 

don’t know which two are equal, but there’s only a finite 

number of possibilities to consider: 1 = 2, 1 = 3, 2 = 3 and 

so on. 

Now in each case the equality gives rise to a word 

that must belong to H. So we now repeat the Todd-

Coxeter algorithm, this time including this newly found 

word as one of the generators of H. 

 

If the algorithm terminates with at most n codes 

we’ll have found the generators of a subgroup whose 

index is at most  n.  But if the algorithm continues until 

n + 1 codes have been generated then again we must have 

a pair of equal codes. And again we won’t know which 

two codes are equal so we’ll have to split our working into 

even more cases. 

 

But the number of cases will be finite and in each 

one we’ll have found a new word to add to our generators 

for H. If we eventually reach a stage where the algorithm 

terminates with n codes or fewer in each case then we’ll 

have found all the subgroups whose index is at most n. 
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 At each stage our working splits into finitely many 

cases, depending on which two codes are equal. At the 

next stage each of these cases splits into a finite number 

of subcases, and so on. So our computation proceeds 

along the edges of a tree, with each node representing a 

separate Todd-Coxeter calculation. 
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EXERCISES FOR CHAPTER 8 
 

Exercise 1: For each of the following statements 

determine whether it is true or false. 

(1) The pair x−1x is an inverse pair. 

(2) The word a−1baabb−1ab is a reduced word. 

(3) The null string is a reduced word. 

(4) The words x−1yxz and yz are equivalent. 

(5) Free groups are non-abelian. 

(6) Every group is a subgroup of some free group. 

(7) If w is a group word and [w] is the set of all words that 

are equivalent to  w  then [w] contains exactly one reduced 

word. 

(8) The rank of the free group X, Y, Z | Z = XY is 2. 

(9) If two free groups are isomorphic the ranks are equal. 

(10) If H  G and both are free groups then 

rank(H)  rank (G). 

 

Exercise 2: Find an equivalence sequence from the word   

a−1bb−1acdc−1ccc−1d−1a−1   to a reduced word. 

 

Exercise 3: Let G be the free group of rank 2 and let H be 

the subset consisting of those elements where the sum of 

the powers is even. 

(a) Show that H is a subgroup of G; 

(b)  Find |G:H|; 

(c) Use Schreier-Nielsen to find the rank of H; 

(d) Find a set of generators for H. 
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SOLUTIONS FOR CHAPTER 8 
 

Exercise 1: 

(1) TRUE 

(2) FALSE 

(3) TRUE 

(4) FALSE 

(5) FALSE: The free group of rank 1 is infinite cyclic. 

(6) FALSE 

(7) TRUE 

(8) TRUE 

(9) TRUE. 

(10) FALSE. 

 

Exercise 2: a−1bb−1acdc−1ccc−1d−1a−1 

→ a−1acdc−1ccc−1d−1a−1 

→ cdc−1ccc−1d−1a−1 

→ cdcc−1d−1a−1 

→ cdd−1a−1 → ca−1. 

 

Exercise 3: 

(a) Let G = A, B | .  If w  G let p(w) be the sum of the 

powers in w, mod 2.  Since cancelling an inverse pair 

doesn’t change p(w), p is well-defined. 

If u = Am1Bn1 … and v = As1Bt1 … then 

uv = Am1Bn1 … Am1Bn1 …  and 

p(uv) = p(u) + p(v). 
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Hence p:G → ℤ2 is a homomorphism and H = ker(p) and 

so is a normal subgroup of G. 

(b) By the first isomorphism theorem G/H  ℤ2 and so 

|G:H| = 2. 

 

(c) Using the notation of the Schreier-Nielsen theorem, 

r = h = 2 and so rank(H) = 3. 

(d) H = A2, B2, AB. 

 


