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13. GROUPS AXIOMS 

 AND PROPERTIES 
 

§13.1. Abstract Groups and the 

Group Axioms 
 For Galois, a group was a symmetry group of 

certain algebraic expressions involving the roots of a 

polynomial. In time his work was abstracted from its 

polynomial setting as the emphasis shifted to groups of 

‘substitutions’ (as they were called at the time) or 

‘permutations’ (as we refer to them now). The symbols 

being permuted could now can be anything, not just roots 

of polynomials. This was the first stage in the process of 

abstraction. 

 A considerable body of theory was built up and 

many books were written on the subject until around the 

beginning of this century it was realised that every 

theorem could be derived from just four simple facts. That 

resulted in the process of abstraction being continued one 

stage further as groups and permutations were uncoupled. 

Now any algebraic system which behaves in a manner 

described by these four axioms could be called a group. 

 

 Throughout our mathematical education we’ve 

been exposed to a variety of algebraic systems – systems 

of numbers, systems of vectors, of matrices and of 

permutations. At any time we generally worked within 
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one or two of these systems and our objects of study were 

individual numbers, matrices etc. Now we’ll look at 

algebra through a wide-angle lens. The objects of our 

consideration will no longer be objects inside algebraic 

systems –  they will be the algebraic systems themselves. 

 ‘Group’ is the name given to a certain type of 

algebraic structure which satisfies four basic properties 

called the group axioms. On the basis of these axioms it 

is possible to develop a considerable body of theory – 

Group Theory. We can prove theorems about groups 

without needing to know what they are groups of, by  

basing the proofs solely on these four group axioms. 

 The advantage of this abstract approach is that we 

can deal with countless algebraic systems at once. The 

one theorem in Group Theory immediately becomes a 

theorem for groups of matrices, and a theorem for groups 

of numbers, and a theorem for groups of permutations, 

and so on. 

 

 A binary operation * on a set G is a function that 

associates with every ordered pair of elements a,b  G, a 

unique element of G, denoted by a*b. A group (G, *) is 

a set G together with a binary operation * such that: 

 

Closure Law: a*b  G for all a, b  G. 

Associative Law: (a * b) * c = a * (b * c) for all a, b, c 

 G. 
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Identity Law:There exists e  G such that a*e = a = 

e*a for all a  G. 

Inverse Law: For all a  G there exists b  G such that 

a*b = e = b*a. 

 

COMMENTS 

(1) The closure law is really redundant because it’s 

implicit in the definition of a binary operation. However 

it’s usually included for emphasis. 

(2) The element e is called the identity for G. We show 

later that it must be unique, that is, a group can only have 

one identity for its operation. 

(3) The element b in the last axiom is called the inverse 

of a (under *). It too is unique. Every element has exactly 

one inverse. 

(4) The inverse of the inverse of an element is that 

element itself. 

 
An abelian group G is one which also satisfies the 

following: 

 

Commutative Law: a*b = b*a for all a, b  G. 
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§13.2. Examples of Groups 
The following two systems are examples of abelian 

groups: 

(1) (ℤ, +) is the group of integers under addition. Its 

identity is 0 and the inverse of an integer n is −n. 

(2) (ℝ#, ) is the group of all non-zero real numbers under 

multiplication. Its identity is 1 and the inverse of x is x−1. 

Note that unlike the first example, the closure law needs 

a moment's thought in that it requires the observation that 

x  0 and y  0 implies xy  0. 

 

The next two systems are non-abelian groups: 

(3) (GL(2, ℝ), ) is the group of all invertible 2 x 2 

matrices [matrices with non-zero determinants] with real 

number entries. Checking the axioms needs a little non-

trivial knowledge about matrices. Checking the closure 

law requires us to know that the product of two invertible 

matrices is invertible. And we need to know more than 

the fact that every invertible matrix has an inverse. We 

need to observe that such an inverse is itself invertible. 

 

(4) (S4, ) is the group of all permutations on the set {1, 

2, 3, 4}. 

 

The following two algebraic systems are not groups: 

(5) (ℤ#, ) the system of non-zero integers under 

multiplication is not a group because the Inverse Axiom 

does not hold. Certainly every non-zero integer has an 
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inverse but in most cases these inverses are not 

themselves integers. The integer 2, for example, does not 

have an integer inverse. In fact ±1 are the only ones which 

have. 

 

(6) If S = {x  ℝ  −10 < x < 10} (i.e. the set of real 

numbers between −10 and +10) then 

(S, +) is not a group because it isn’t closed. For example, 

5 + 5  S. 

 

A finite group can be defined by displaying its group 

table. The set {a, b, c} is a group under the binary 

operation defined by the table: 

 

 

§13.3. Basic Properties of Groups 
Theorem 1: The identity element of a group is unique. 

Proof: Suppose e,f are identities for a group (G,*). Then 

e = e * f (since f is an identity) = f (since e is an identity). 
☺ 

* a b c 

a a b c 

b b c a 

c c a b 
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Theorem 2: Each element of a group has only one 

inverse. 

Proof: Suppose b,c are both inverses of the element a in 

a group (G, *) whose identity is e. Then  b = b * e = b * 

(a * c) = (b * a) * c = e * c = c. ☺ 

 

At this stage we’ll dispense with the clumsy x, which 

was only used to avoid confusion with ordinary addition 

and multiplication of numbers, and to remind ourselves 

that the operation need not be anything like these 

arithmetic operations. We use one of two systems of 

notation when we’re discussing groups in general. 

 

Operation Multiplicative 

Notation 

Use in general. 

Additive 

Notation 

Use only for 

abelian groups 

Product ab a + b 

Identity 1 0 

Inverse of a a−1 −a 

Product of n 

copies of a 
a−n na 

  

Theorem 3 (Cancellation Law):  If ax = ay then x = y. 

Proof: Suppose ax = ay. Then a−1(ax) = a−1(ay). 

Hence (a−1a)x = (a−1a)y. Thus 1x = 1y and so x = y. ☺ 

[Notice that all the group axioms (except the Closure 

Law) are needed to prove this.] 
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Similarly one can prove that xa = ya implies that x = y. 

Thus cancellation on the left or on the right are possible. 

But beware! We can cancel both sides of an equation on 

the left and both sides on the right. But we can’t cancel 

one side of the equation by the same factor on the right. 

So if ax = ya we’re not allowed to cancel the a’s. Also 

with expressions such as y−1xy and x−1y−1xy we can’t 

cancel the elements and their inverses unless x and y 

commute. These expressions play an important role in the 

theory of non-abelian groups. 

 

A consequence of the Cancellation Law is that for a group 

every element appears exactly once and only once in the 

multiplication table. 

 

§13.4. Powers of Elements 
Theorem 4: In a group G  (ab)−1 = b−1a−1. 

Proof: (b−1a−1)(ab) = b−1(a−1a)b = 1 and similarly 

(ab)(b−1a−1) = 1. ☺ 

[Remember that the inverse of a product is the product of 

the inverses in reverse order.] 

 

If g is an element of a group, we define positive integer 

powers of g inductively as follows: 

g0 = 1 ;   gn+1 = gng for all n  0. 

We define negative powers by g−n = (g−1)n for all negative 

integers −n. 
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Theorem 5: For all natural numbers m, n and all elements 

a,b in a group G: 

            (1) aman = am+n 

            (2) (am)n = amn 

            (3) if G is abelian, (ab)n = anbn 

            (4) (b−1ab)n = b−1anb. 

Proof: Although these seem obvious enough (and indeed 

they are obvious if m,n are positive just by counting 

factors) the cases where one or both of m,n are negative 

require special attention. 

(1) This is obvious if both m,n are positive or zero. 

Suppose m is positive and n is negative, say n = −r. If m 

 r then on the LHS there will be r cancelling pairs of aa-

1 leaving m − r 

= m + n, factors of a. If m < r there will be only m such 

pairs leaving r − m factors of a−1. The result is therefore 

a−(r − m) = am−r = am+n. 

 

We’ve thus proved the result for all n where m  0. If m 

is negative, say m = −s, then putting b = a−1 the LHS is 

bsb−n. By the earlier case this is bs−n = an−s = am+n. 

 

(2) Again this is obvious if m,n are both positive. The 

other cases are left as exercises. 

 

(3) If n is positive we simply count the number of factors 

on each side. Because the group is assumed to be abelian 

here, the factors may be rearranged so all the a’s can be 
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brought to the front. If n is zero, LHS = RHS = 1. If n is 

negative we put b = a−1 and use the positive case. 

 

(4) If n is positive, (b−1ab)n = b−1a(bb−1)a(bb−1) ... (bb−1)ab 

(n factors) 

                                          =  b−1aa ... ab 

                                          = b−1anb. 

 If n = 0, LHS = RHS = 1. 

If n = −m is negative (b−1ab)n = (b−1ab)−m 

                                             = ((b−1ab)−1)m 

                                             = (b−1a−1b)m 

                                             = b−1(a−1)mb 

                                             = b−1a−mb 

                                             = b−1anb. ☺ 

 

§13.5. More Properties of Groups 
The cyclic subgroup generated by an element g is the 

set of all powers of g (including 1 as g0 and negative 

powers). It is denoted by g. The order of an element g 

is the smallest positive integer n such that gn = 1. [In 

additive notation this becomes the smallest positive n 

such that ng = 0.] It is denoted by g. If there is no such 

positive n, we say that g has infinite order. 

 

Example 1: In the group of all non-zero complex 

numbers under multiplication, i has order 4,   = e2i/3 has 

order 3, and 2 has infinite order. The identity element of 

any group is the only element of order 1. 
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Theorem 6: The order of an element is the order of the 

cyclic subgroup it generates. 

Proof: Suppose g has finite order n. Then gn = 1 but gk 

  1 if 0 < k < n. Hence every power of g is gk for some k 

with 0  k < n, and these are distinct since gk = gk+s for 0 

< s < n implies that gs = 1, a contradiction. So g = {1, 

g, g2, …, gn−1}. 

If g has infinite order, ☺ 

 

Theorem 7: Groups of even order must contain an 

element of order 2. 

Proof: Suppose |G| is even. Now the elements of G which 

differ from their inverses must come in pairs {x, x−1}. 

Since |G| is even, the remaining elements, those for which 

x = x−1, must also be even in number. Now x = x−1 is 

equivalent to x2 = 1 and so these are the elements of order 

2, together with the identity. Leaving out the identity, 

there must be an odd number of elements of order 2 and 

so the number of elements of order 2 must be at least 1. 
☺ 

 

Theorem 8: If all of the elements of G (except 1) have 

order 2, then G must be abelian. 

Proof: Let x, y  G. Then (xy)2 = 1. But also x2y2 = 1 

and so xyxy = xxyy. 

Multiplying by x−1 on the left and by y−1 on the right of 

each side of the equation we conclude that yx = xy. Since 

this holds for all x, y  G it follows that G is abelian. ☺ 
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§13.6. Cyclic Groups 
A group G is cyclic if it can be generated by a single 

element, that is if G = g for some g  G. It is called the 

cyclic group generated by  g.) 

 

Example 2: The set of n-th roots of unity, G = {z  ℂ  zn 

= 1}, is a group under multiplication. It is a cyclic group 

because it can be generated by e2i/n. This is because every 

nth  root of 1 has the form e2ki/n = (e2i/n)k. 

In particular the group of 4th roots of unity is {1, i, −1, −i} 

which is generated by i. 

 

Example 3: The group of symmetries of a parallelogram 

is {I, R} where R is a 180° rotation about its centre. This 

group is thus generated by R. 

 

Example 4: The group (ℤ,+) of integers under addition 

is cyclic because it can be generated by the integer 1. 

Remember that we’re using additive notation here so 

instead of saying that every integer is an integer power 

of 1 (which is not the case), we should be saying that 

every integer is an integer multiple of 1 (which it is). 

Note that −1 also generates this group, but ±1 are the 

only generators. 
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Theorem 9: Cyclic groups are abelian. 

Proof: Two typical elements in the cyclic group g are gr 

and gs. Now grgs = gr+s = gsgr. So every pair of elements 

commute and hence the cyclic group is abelian. ☺ 

 

Theorem 10: A finite group of order n is cyclic if and 

only if it contains an element of order n. 

Proof: If G = n and G has an element g of order n then 

g, the cyclic subgroup generated by g has order n. Thus 

there are no other elements in G. They are all powers of g 

and so g is a generator for G and hence G is cyclic. 

 

Conversely suppose that G is a cyclic group of order n. 

Then if g is a generator, g must have order n. ☺ 

 

Example 5: The group given by the following 

multiplication table is not cyclic since it has no element 

of order 4. 

 

 

  

               A B C D 

A A B C D 

B B A D C 

C C D A B 

D D C B A 
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SUMMARY 

Group Axioms: Closure, Associative: (xy)z = x(yz), 

Identity: 1, Inverses: g−1. 

Abelian Group: Group + Commutative: xy = yx]. 

Uniqueness: The identity and inverses are unique. 

Cancellation: You can cancel by any element if it is on 

the same end of LHS and RHS 

Group Table: ab is in row a and column b (For 

convenience put 1 first.) 

Every element appears exactly once in every row and 

column. 

Elements of order 2 show up by having 1 on the 

diagonal. 

A group is abelian if its group table is symmetric. 

Powers: Defined as for numbers (g0 = 1). 

Usual basic index laws hold except that (ab)n = anbn only 

holds if ab = ba (a, b commute). 

Note that (b−1ab)n = b−1anb and (ab)−1 = b−1a−1 hold in 

any group. 

Cyclic Subgroups: g = the set of all powers of g. 

Order of Element: g = smallest positive power n such 

that gn = 1. 

Order of Group: |G| = number of elements in G. 

Note: |g| = |g|. 

Elements of Order 2: Groups of even order contain an 

element of order 2. 

Groups in which every element has order 2 must be 

abelian. 
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Cyclic Groups: G is cyclic if G = g for some generator 

g. Cyclic groups are abelian. 

 If |G| = n, G is cyclic if and only if it has an element of 

order n. 

 

EXERCISES FOR CHAPTER 13 
Exercise 1: Which of the following algebraic systems, G, 

are groups? In each case where G is not a group state 

which group axioms fail. In each case where G is a group 

answer the following questions find the identity of G, the 

inverse of a typical element and state whether G is abelian 

or cyclic? 

 

(a) The set of real numbers under addition. 

(b) The set of real numbers under subtraction. 

(c) The set of positive real numbers under multiplication. 

(d) The set of all 22 real invertible matrices under matrix 

multiplication. 

(e) The set of all 22 real invertible matrices under matrix 

addition. 

(f) The set of complex numbers whose modulus is 1, 

under multiplication. 

(g) The set of all complex cube roots of unity under 

multiplication. 

(h) The set {0, 1, 2, 3, 4, 5} under addition modulo 6. 

(i) The set {1, 2, 3, 4, 5} under multiplication modulo 6. 

(j) The set of all real numbers of the form 2n where n is an 

integer. 
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(k) The set of all vectors in ℝ3 under the cross product. 

(l) The set of functions {f, g, h, k} where f(x) = x;  g(x) = 

−x; h(x) = x−1; k(x) = − x−1 under the operation of 

composition of functions (function of a function). 

 

Exercise 2: Let G = {x  ℝ | x  −1} denote the set of 

real numbers excluding −1, and let the binary operation * 

be defined on G by: a*b = a + b + ab 

(i) Prove that (G, *) is a group. 

(ii) What is the inverse of 2? 

(iii) How many elements does G have of order 2? 

 

Exercise 3: Prove that the set of all real 22 matrices 







 cos   −sin 

 sin   cos 
 is a group under matrix multiplication. 

 

Exercise 4: Find all possible group tables for groups of 

order 1, 2 or 3. 

 

Exercise 5: Find the numbers of elements of each order 

in the following two groups whose group tables are given: 

 

(a)  

 1 a b c 

1 1 a b c 

a a 1 c b 

b b c 1 a 

c c b a 1 
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(b) 

 1 a b c 

1 1 a b c 

a a b c 1 

b b c 1 a 

c c 1 a b 

 

Exercise 6: Find the orders of the elements in the cyclic 

group of order 6. 

 

Exercise 7: Find the orders of the elements of the 

following three groups: 

G = the group {0, 1, 2, 3, 4, 5, 6, 7} under addition 8; 

H = the group {1, 3, 7, 9, 11, 13, 17, 19} under 

multiplication modulo 20; 

K = the dihedral group of order 8. 

Show that no two of these groups are isomorphic. 

 

Exercise 8: Which of the above three groups of order 8 is 

cyclic? Which are abelian? 

 

Exercise 9: Find 9, the cyclic group generated by 9, in 

the group ℤ 100
#. This consists of all the integers from 1 to 

99 which have no factors in common with 100. The 

operation is multiplication modulo 100. Also determine 

the order of 9 in this group. 
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Exercise 10: Find the order of the following elements in 

the group ℤ 100 (consisting of all the integers from 0 to 99 

under addition modulo 100): 

2, 9, 6, 15. 

 

Exercise 11: Which of the following algebraic systems, 

G, are groups? In each case where G is not a group state 

which group axioms fail. In each case where G is a group 

answer the following questions: Find the identity of G, the 

inverse of a typical element and state whether G is abelian 

or cyclic? 

(a) The set of even integers under addition. 

(b) The set of even integers under multiplication. 

(c) The set {1, i} under multiplication. 

(d) The set of all 22 real symmetric matrices under 

matrix multiplication. 

(e) The set of all 22 matrices of the form: 







a  0

 0 b
  where a,b are both non-zero, under matrix 

multiplication. 

(f) The set of complex numbers whose argument is an 

integer multiple of /4, under multiplication. 

(g) The set of all complex numbers z such that z3 is real, 

under multiplication. 

(h) The set {0, 1, 2, 3, 4, 5, 6} under addition modulo 7. 

(i) The set {1, 2, 3, 4, 5, 6} under multiplication mod 7. 

(j) The set of all complex numbers z such that zn is real 

for some integer n, under multiplication. 

(k) The set of all non-zero real numbers of the form 



 

346 
 

a + b2, 

where a, b are rational numbers, under multiplication. 

(l) The set of subsets of {1, 2, 3, 4} under the operation: 

S * T = S  T − (S  T). 

 

Exercise 12: Let G = {z  Cz  1} denote the set of real 

numbers excluding 1, and let the binary operation * be 

defined on G by:   a*b = ab − a −b + 2 

(i) Prove that (G, *) is a group. 

(ii) What is the inverse of i? 

(iii) How many elements does G have of order 3? 

 

Exercise 13: Prove that the set of all real 22 matrices of 

the form 






sin     cos 

−cos    sin 
 is a group under matrix 

multiplication. 

 

Exercise 14: Find all the possible ways of completing the 

following group table: 

 

 1 a b c 

1     

a     

b     

c     

 

Which of these groups are isomorphic? 
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Exercise 15: Complete the following group table and find 

the numbers of elements of each order. 

 

 1 a b c d e 

1       

a  1 c b  d 

b   d a 1  

c  d e  a b 

d  c  e b a 

e  b a  c 1 

 

Exercise 16: Find the orders of the elements of the 

following three groups: 

G = {1,  −1,   i,   −i,   
1 + i

2
,   

1 − i

2
,   

−1 + i

2
,   

−1 − i

2
}   

under multiplication; 

H = the group of symmetries of a rectangular box; 

K = the group of order 8 whose group table is: 

 1 −1 i −i j −j k −k 

1 1 −1 i −i j −j k −k 

−1 −1 1 −i i −j j −k k 

i i −i −1 1 k −k −j j 

−i −i i 1 −1 −k k j −j 

j j −j −k k −1 1 i −i 

−j −j j k −k 1 −1 −i i 

k k −k j −j i −i −1 1 

−k −k k −j j −i i 1 −1 

Show that no two of these groups are isomorphic. 
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Exercise 17: Find the numbers of elements of each order 

in the cyclic group of order 12. 

 

Exercise 18: Which of the above three groups of order 8 

is cyclic? Which are abelian? 

 

Exercise 19: Find the order of the following elements in 

the group ℤ17
# (consisting of all the integers from 1 to 16 

under multiplication modulo 17): 

2, 6, 9, 15. 

 

 

SOLUTIONS FOR CHAPTER 13 
Exercise 1: 

(a) G is a group. The identity is 0. The inverse of x is −x. 

G is abelian but not cyclic. [Clearly 0 is not a generator, 

and a non-zero number x can never generate x/2 under 

addition and so can’t be a generator.] 

 

(b) G is not a group. The system is certainly closed but 

subtraction is not associative. 

[(x − y) − z = x − y − z while x − (y − z) = x − y + z.] 

Nor is there an identity. Sure, x − 0 = x for all x, but an 

identity has to work on both sides and 0 − x = x is only 

true for x = 0. Since there’s no identity there can’t be 

inverses. 
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(c) This is a group. The identity is 1 and the inverse of x 

is 1/x. This group is abelian but not cyclic. [ If x was  a 

generator then xn would have to equal 1 for some integer 

n. However the only real n’th root of unity is 1 itself and 

clearly doesn't generate the group.] 

 

(d) This is a group. [The product of two matrices with 

inverses is also invertible: (AB)−1 = B−1A−1. Matrix 

multiplication is associative.] The identity is the 22 

identity matrix I and the inverse of 






a  b

 c d
 is 

1

ad−bc





d  −b

 −c  a
 

This group is non-abelian (and so can’t possibly be 

cyclic). 

 

(e) This is not a group. For a start, it isn't closed [I and −I 

are invertible but not their sum, the zero matrix]. Nor is 

there an identity [the zero matrix is the only possibility, 

but as we have just pointed out it’s not in the system. All 

this system has going for it is that the operation is 

associative. And even though it’s true that (−A) is 

invertible if A is invertible, we can’t claim that inverses 

exist if the system doesn't have an identity. 

 

(f) This is a group. If a = 1 and b = 1 then ab = 1 and 

so G is closed. Multiplication of complex numbers is 

associative. The identity is 1 and the inverse of z is 1/z. 

[Note it is not enough to observe that if z = 1, 1/z exists. 

We must note that 1/z = 1/z = 1 thus checking that 1/z 
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belongs to the system.] This group is abelian but is not 

cyclic [If g is a generator then, since −1  G, gn = −1 for 

some integer n > 0. But then g2n = 1 and so g would only 

have n distinct powers while G is infinite.] 

 

(g) G = {1, , 2} and so is clearly a cyclic (and hence 

abelian) group of order 3. 

 

(h) This is a cyclic (and hence, abelian) group. The 

identity is 0, the inverse of x is 6 − x. The generators are 

1 and 5.  

 

(i) This is not a group. It is closed, the operation is 

associative and 1 is the identity. It falls down at the last 

axiom. Some elements do not have inverse. In fact 1 and 

5 are the only ones which do. [For what x is 2x = 1(mod 

6)? None, of course!] 

 

(j) This is a cyclic (and hence, abelian) group. The identity 

is 1 = 20, the inverse of 2n is 2−n. The generators are 2 and 

½. 

 

(k) This is not a group since the cross product of vectors 

is not associative. 

 

(l) This is a group of order 4, containing 3 elements of 

order 2, plus the identity function f. [For example g has 

order 2 since g(g(x)) = −(−x) = x = f(x) so g2 = f.] Since G 

has no element of order 4, it can’t be cyclic. 
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Exercise 2: This is a very good example on which to 

practice ones skills in Proof By Contradiction. 

Closure: Let a, b  G, so a  −1 and b  −1. Suppose a*b 

= −1. Then a + b + ab = −1 and so (a + 1)(b + 1) = 0 which 

implies that a =  −1 or b = −1, a contradiction. 

Associative: Unlike the examples in exercise 1, this is a 

totally new operation that we have never encountered 

before. We must therefore carefully check the associative 

law. 

(a*b)*c = (a*b) + c + (a*b)c 

             = ab + a + b + c + (ab + a + b)c 

             = a + b + c + ab + ac + bc + abc 

Similarly a*(b*c) has the same value (we can actually see 

this by the symmetry of the expression. 

Identity: An identity, e, would have to satisfy: e*x = x = 

x*e for all x  G, that is, ex + e + x = x, or e(x + 1) = 0 for 

all x. Clearly e = 0 works. The identity is 0. 

Inverses:  If x*y = 0, then xy + x + y = 0. So y(x + 1) = −

x and hence y = −x/(x + 1). This exists for all x  −1, i.e. 

for all x  G. But we must also check that it is itself an 

element of G. Suppose −x/(x + 1) = −1. Then −x = −x −1, 

which gives 0 = −1. This is clearly a contradiction and 

hence y must be in G. 
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Exercise 3:  

Closure:






 cos   −sin 

 sin   cos  





 cos   −sin 

 sin   cos 
 

= 






cos  cos  −sin  sin   −(cos  sin  + sin  cos ) 

 cos  sin  + sin  cos   cos  cos  −sin  sin 
 

= 






 cos (+)  −sin (+)

 sin (+)  cos (+)
 

Associative: The operation is matrix multiplication and 

so is associative. 

Identity: The identity is the identity matrix 

= 






1  0

0  1
 = 







cos 0 −sin 0

 sin 0  cos 0
 which has the required form. 

Inverses: The determinant of  






 cos   −sin 

 sin   cos 
 is cos

2
 + 

sin2 = 1 and so the inverse is 






 cos    sin 

 −sin  cos 
 = 







 cos (−)   sin (−)

 −sin (−) cos (−)
 which is in the system. 

 

Exercise 4: 

Order 1: If there is only one element in a group, it must 

be the identity and so the group table is simply: 

 1 

1 1 
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Order 2: A group of order 2 has two elements 1, x. Filling 

out the table using the property of 1 we get: 

 1 x 

1 1 x 

x x  

Since every element appears exactly once in every row 

and column, the missing entry must be 1 and so the 

complete table is: 

 1 x 

1 1 x 

x x 1 

 

Order 3: Denoting the elements by 1, x, y we get: 

 1 x y 

1 1 x y 

x x  ? 

y y   

Now xy can’t be x (as its already in that row) and it can’t 

be y (as its already in that column) so it must be 1. The 

table can now be completed using the same principle: 

 

 1 x y 

1 1 x y 

x x y 1 

y y 1 x 

 

Thus we’ve shown that there is only one group for each 

of the orders 1, 2 and 3. 
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Exercise 5: 

(a) has the 1 plus 3 elements of order 2. 

(b) has 1, one element of order 2 (viz. b) and 2 elements 

of order 4. 

[The fact that they differ in their structure in this way 

means that they are non-isomorphic, or essentially 

different. These two tables reflect the only two possible 

group structures for a group of order 4.] 

 

Exercise 6: The cyclic group of order 6 has the form: 

{1, g, g3, g3, g4, g5} where g6 = 1 

Clearly g has order 6. 

(g2)2 = g4, (g2)3 = g6 = 1 and so g2 has order 3. 

(g3)2 = 1 and so g3 has order 2. 

(g4)2 = g8 = g2, (g4)3 = g12 = 1 and so g4 has order 3; 

Finally, g5 = g−1 and so clearly has order 6. 

The cyclic group of order 6 thus has: 

1 element of order 1; 

1 element of order 2; 

2 elements of order 3; 

2 elements of order 6. 

NOTE: orders 4 and 5 are missed out as possible orders. 

Can you guess why? 

 

Exercise 7: 

G:   1, 3, 5, 7 have order 8 

               2, 6 have order 4 

                      4 has order 2 

                      0 has order 1 
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H:   3, 7, 13 and 17 have order 4 

           9, 11 and 19 have order 2 

                               1 has order 1 

K:   The dihedral group 

a, b | a4 = b2 = 1, ab = ba−1 has elements 1, a, a2, a3, b, 

ab, a2b, a3b. Of these: 

                    a, a3 have order 4 

a2, b, ab, a2b, a3b have order 2; 

                            1 has order 1. 

NOTE: The order of the group is a power of 2 and the 

orders of the elements are likewise powers of 2. This is 

quite significant. 

Listing the numbers of the elements of orders 1, 2, 4 and 

8 as vectors we have: 

G: (1, 1, 2, 4);    H: (1, 3, 4, 0);   K: (1, 5, 2, 0) 

The differences show that these three groups are mutually 

non-isomorphic. There are in fact 5 distinct groups of 

order 8, the above three plus two others. 

 

Exercise 8: G is cyclic (and hence abelian) because it 

contains an element of order 8; H is abelian but not cyclic; 

K is non-abelian (and hence not cyclic). 

NOTE: There’s always only one cyclic group of any 

given order. In other words, all cyclic groups of order n 

are isomorphic to0 one another. A representative example 

of the cyclic group of order n is ℤn = {0, 1, ... n−1} of 

integers modulo n under addition. 
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Exercise 9: The powers of 9 are 91 = 9, 92 = 81, 93 = 729 

= 29 mod 100 and so on. 

Rather than accumulate the higher and higher powers we 

can simply multiply by 9 at each stage to get the next, for 

example, 94 = 9  29 = 261 = 61 mod 100. Then come 49, 

41, 69, 21, 89 and finally 1. 

So 9 = {1, 9, 81, 29, 61, 49, 41, 69, 21, 89}. There are 

10 elements in this cyclic subgroup and so 9 has order 10 

under multiplication modulo 100. 

 

Exercise 10: 

2: Remember that the operation is addition, so we need to 

keep adding the generator to itself, that is, taking higher 

and higher multiples, not powers. We want the smallest 

positive integer n such that 2n  0 mod 100, or in other 

words, such that 2n is a multiple of 100. The answer is 

clearly 50. 

9: We want 100 to divide 9n. Since 100 has no factors in 

common with 9, we’d need n itself to be a multiple of 100. 

The smallest positive such n is thus 100. So 9 has order 

100 in this group. 

6: We need 6n to be a multiple of 100. Since 2 divides 

both 6 and 100 we need 50 to divide 3n. But since 50 has 

no factor in common with 3, we'd need 50 to divide n. So 

6 has order 50. 

15: 15n  0 mod 100 means 3n = 0 mod 20. Since 3 is 

coprime with 20, we need n = 0 mod 20, so 15 has order 

20. 

 


