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INTRODUCTION 
 

Mathematics is often admired because one doesn’t 

have to take anything on faith. Everything can be proved. 

But it’s obvious that you must begin with some 

assumptions. Nothing can be proved out of nothing. 

 

Sets were introduced towards the end of the 

nineteenth century and it was quickly realised that they 

could be a suitable foundation on which to build the whole 

of mathematics. The important thing about a set is that it 

is the embodiment of a property. For every property P we 

can form the set of all things having that property, that is 

{x | Px}, or so it was assumed. But the Russell paradox 

arises when Px means ‘x  x’, for if S = {x | x  x} then 

S  S if and only if S  S. 

 

Axiomatic Set Theory was developed as a way of 

avoiding this pitfall, by legislating which properties can 

be allowed to give rise to sets. There were several ways 

proposed for doing this, all of which are equivalent to one 

another. In these notes we build upon the Zermelo-

Fraenkel Axioms. 

 

We show, assuming the ZF axioms, how we can 

develop a set theory in which everything we need is a set. 

Numbers can be defined as sets, ordered pairs can be 

defined as sets, functions can be defined as sets. Indeed 

every object in mathematics can be defined as a set. 
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 Virtually every mathematical theorem can be proved by 

building on the ZF axioms. We illustrate the method by 

developing those parts of mathematics that normally use 

a lot of intuition, such as arithmetic, geometry and 

trigonometry. 

Some mathematical theorems need to assume an 

additional axiom, the Axiom of Choice. 

 

The startling thing is that the only set whose 

existence we assume in any absolute sense is the empty 

set. Various axioms allow us to construct a whole range 

of sets from the empty set, but there’s a sense in which 

the whole of mathematics can be created from a void! 

 

 We develop the natural numbers as sets. For 

example the number 3 will be defined as: 

{, {}, {, {}}}. 

Well, at least it has 3 elements!  Then we define the 

positive rational numbers, the positive real numbers, the 

set of all real numbers and finally the set of complex 

numbers – all as sets of sets of … 

 

 One of the principles we must follow is not to make 

any assumption based on geometric intuition. None of our 

proofs can be based on a diagram. This makes life 

difficult for us when it comes to trigonometry. Even the 

number  has to be redefined. We can’t define it in terms 

of the circumference of a circle. But fortunately we can 

still do it. We define the cosine function as a power series 
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and define /2 as the smallest positive real number whose 

cosine is zero (after establishing that such a thing exists). 

 

The natural numbers are a way of counting finite 

sets, but for infinite sets we need to develop infinite 

cardinal numbers. The amazing thing is that there is 

more than one. Following the work of Georg Cantor we 

see that there are bigger and bigger infinite numbers. And 

eventually we see that even these infinite numbers are 

themselves sets, built up from the empty set. 

 

Then we come across statements about sets that are 

unprovable, that is where it can be proved that there 

cannot be a proof that they are true, nor a proof that they 

are false. A famous, and useful, example is the Axiom of 

Choice and its equivalent formulation as Zorn’s Lemma. 

This must be accepted, or rejected, as an article of faith. 

Or, in other words, if we want to use it we must accept it 

as an additional axiom. 

 

The Axiom of Choice roughly says that if we have 

a set of non-empty sets there exists a set that consists of 

one element from each, or in other words it’s possible to 

choose elements from a collection of non-empty sets, 

even if the collection is infinite. Put like this it seems 

plausible, yet it cannot be proved using the standard ZF 

axioms. We need the extra axiom – the Axiom of Choice. 

It seems reasonable to accept it because intuitively such 

choices are possible even with infinitely many infinite 
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sets. However a consequence of the Axiom of Choice is 

that a solid ball can be decomposed into finitely many 

pieces and reassembled to form two solid balls of the same 

radius!  The ‘pieces’ are subsets but would be more like 

clouds than pieces, so disconnected that their volume 

cannot be defined, and so the law of conservation of 

volume is not broken. 

Then we make a brief excursion into the theory of 

ordinal numbers, a generalisation of the familiar 1st, 2nd, 

3rd, … 

 

A study of Axiomatic Set Theory causes one to 

look at the nature of mathematical truth and takes one to 

bizarre corners of the mathematical universe where logic 

survives, but only just!  With a universe created from a 

void, axioms that must be taken on faith, and facts that are 

unknowable, axiomatic set theory sounds eerily like a 

religion. It is certainly a side of mathematics that is quite 

different to anything you have ever seen before!  
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