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INTRODUCTION 
 

 When it’s finished, this set of notes will provide a 

solid introduction to Graph Theory. These graphs aren’t 

the familiar functions plotted on the x-y plane. 

 A graph, often called a network, is simply a set of 

objects called vertices, some or all of which are 

connected by other objects called edges. These terms 

come from the way we usually draw graphs, with the 

vertices being points in a plane, and the edges being 

curves, usually straight line segments, that connect one 

vertex to another. 

 The layout is irrelevant. The only feature of each 

edge that is important is which vertex is joined to which. 

Sometimes the edges are given a direction, but mostly 

we’ll be playing with undirected graphs. 

 A cycle is a sequence of edges, each adjacent to the 

next, that returns to the starting point. Many graphs have 

no cycles. They are called forests because, when drawn, 

they look a bit like an abstract drawing of a real forest. A 

tree is amusingly defined as a ‘connected forest’. 

 Other graphs do have cycles. The shortest cycle has 

three edges, and is called a triangle. One whole chapter 

is devoted to graphs that do or don’t contain any triangles. 

 An Eulerian cycle is a cycle that passes through 

each vertex exactly once and a Hamiltonian cycle is one 

that passes along every edge exactly once. There are 

conditions that ensure that a graph has either one or both 

of these. 
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 The degree of a vertex is the number of edges that 

come out from it. There are many things we can say about 

the list of degrees of the vertices of a graph. 

 We can colour a graph. This means colouring the 

vertices. We don’t need to use actual colours but can 

simply assign each vertex with a label that represents its 

colour. If the vertices represent classes in a school and the 

edges connect two classes that have at least one common 

student, then the colours might represent the time slots at 

which the classes can be held. 

Here it’s important that two vertices that are 

adjacent (connected by an edge) must have different 

colours. For if two classes have overlapping students they 

must be assigned different time slots. 

 A certain graph can be n-coloured if the vertices 

can be coloured with n colours in such a way that adjacent 

vertices are given different colours. A related matter is 

map colouring. 

 A weighted connected graph is one where we 

assigned a number to each edge, called its weight. A 

spanning tree is one that leaves out certain edges but still 

reaches every vertex. A minimal spanning tree is one 

that has the smallest total weight. If the vertices represent 

towns, and the edges represent which towns we wish to 

connect by railroads, a minimal spanning tree might be a 

very desirable way to lay out our tracks. 
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